RCC references

Export 568 results:
Author [ Title(Asc)] Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Pilátová J, Pánek T, Obornik M, Čepička I, Mojzeš P.  2022.  Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. The ISME Journal. PDF icon Pilátová et al. - 2022 - Revisiting biocrystallization purine crystalline .pdf (4.85 MB)PDF icon 41396_2022_1264_MOESM1_ESM.pdf (3.69 MB)
Simon N, Foulon E, Grulois D, Six C, Desdevises Y, Latimier M, Le Gall F, Tragin M, Houdan A, Derelle E et al..  2017.  Revision of the genus micromonas manton et parke (chlorophyta, mamiellophyceae), of the type species m. pusilla (butcher) manton & parke and of the species m. commoda van baren, bachy and worden and description of two new species based on the genetic. Protist. 168:612–635.PDF icon Simon et al. - Revision of the Genus Micromonas Manton et Parke (Chlorophyta, Mamiellophyceae), of the Type Species M. pusilla (Butcher).pdf (7.29 MB)
Cuvelier ML, Guo J, Ortiz AC, van Baren MJ, Tariq MAkram, Partensky F, Worden AZ.  2017.  Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLOS ONE. 12:e0172135.PDF icon Cuvelier et al_2017_Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet.pdf (3.4 MB)
Royer C, Gypens N, Cardol P, Borges AV, Roberty S.  2021.  Response of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas to oxidative stress in three phytoplankton species. Journal of Plankton Research. 43:673–690.PDF icon Royer et al. - 2021 - Response of dimethylsulfoniopropionate (DMSP) and .pdf (1.4 MB)
Groussman RD.  2022.  Resolving the molecular ecology of marine microbial eukaryotes with metatranscriptomes. PDF icon Groussman - Resolving the molecular ecology of marine microbia.pdf (20.31 MB)
Rocap G, Distel DL, Waterbury JB, Chisholm SW.  2002.  Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Applied and Environmental Microbiology. 68:1180–1191.PDF icon Rocap et al_2002_Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S.pdf (360.24 KB)
Walker CE, Taylor AR, Langer G, Durak GM, Heath S, Probert I, Tyrrell T, Brownlee C, Wheeler GL.  2018.  The requirement for calcification differs between ecologically important coccolithophore species. New Phytologist. in pressPDF icon Walker et al_2018_The requirement for calcification differs between ecologically important.pdf (1.97 MB)
Bendif EMahdi, Nevado B, Wong ELY, Hagino K, Probert I, Young JR, Rickaby REM, Filatov DA.  2019.  Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nature Communications. 10:4234.PDF icon Bendif et al. - 2019 - Repeated species radiations in the recent evolutio.pdf (830.15 KB)
Arias AH, Souissi A, Glippa O, Roussin M, Dumoulin D, Net S, Ouddane B, Souissi S.  2017.  Removal and biodegradation of phenanthrene, fluoranthene and pyrene by the marine algae rhodomonas baltica enriched from north atlantic coasts. Bulletin of Environmental Contamination and Toxicology. 98:392–399.
Perez-Sepulveda B, Pitt F, N'Guyen ANgoc, Ratin M, Garczarek L, Millard A, Scanlan DJ.  2018.  Relative stability of ploidy in a marine Synechococcus across various growth conditions. Environmental Microbiology Reports. :inpress.PDF icon Perez-Sepulveda et al_2018_Relative stability of ploidy in a marine Synechococcus across various growth.pdf (198.7 KB)
Laviale M, Neveux J.  2011.  Relationships between pigment ratios and growth irradiance in 11 marine phytoplankton species. Marine Ecology Progress Series. 425:63–77.PDF icon Laviale_Neveux_2011_Relationships between pigment ratios and growth irradiance in 11 marine.pdf (730.2 KB)
Johnsen SAlexander, Bollmann J, Gebuehr C, Herrle JO.  2019.  Relationship between coccolith length and thickness in the coccolithophore species Emiliania huxleyi and Gephyrocapsa oceanica. PLOS ONE. 14:e0220725.
Andersen RA, Graf L, Malakhov Y, Yoon HSu.  2017.  Rediscovery of the Ochromonas type species Ochromonas triangulata (Chrysophyceae) from its type locality (Lake Veysove, Donetsk region, Ukraine). Phycologia. 56:591–604.PDF icon Andersen et al_2017_Rediscovery of the Ochromonas type species Ochromonas triangulata.pdf (2.99 MB)
Roesler C, Uitz J, Claustre H, Boss E, Xing X, Organelli E, Briggs N, Bricaud A, Schmechtig C, Poteau A et al..  2017.  Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods. 15:572–585.PDF icon Roesler et al_2017_Recommendations for obtaining unbiased chlorophyll estimates from in situ.pdf (686.25 KB)
Bendif EMahdi, Probert I, Díaz-Rosas F, Thomas D, van den Engh G, Young JR, von Dassow P.  2016.  Recent reticulate evolution in the ecologically dominant lineage of coccolithophores. Frontiers in Microbiology. 7PDF icon Bendif et al_2016_Recent reticulate evolution in the ecologically dominant lineage of.pdf (4.89 MB)
Kawachi M, Nakayama T, Kayama M, Nomura M, Miyashita H, Bojo O, Rhodes L, Sym S, Pienaar RN, Probert I et al..  2021.  Rappemonads are haptophyte phytoplankton. Current Biology. PDF icon Kawachi et al. - 2021 - Rappemonads are haptophyte phytoplankton.pdf (6.09 MB)
Yau S, Caravello G, Fonvieille N, Desgranges E, Moreau H, Grimsley N.  2018.  Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga. Viruses. 10:441.PDF icon Yau et al_2018_Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga.pdf (3.35 MB)
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, Maumus F, Florent I, Alberti A, Aury J-M et al..  2021.  Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp.. BMC Biology. :1–21.PDF icon Farhat et al_2021_Rapid protein evolution, organellar reductions, and invasive intronic elements.pdf (2.01 MB)
Bendif EMahdi, Probert I, Archontikis OA, Young JR, Beaufort L, Rickaby RE, Filatov D.  2023.  Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton. The ISME Journal. :1–11.PDF icon Bendif et al_2023_Rapid diversification underlying the global dominance of a cosmopolitan.pdf (2.88 MB)
Q
Domínguez-Martín MAgustina, Gómez-Baena G, Díez J, López-Grueso MJosé, Beynon RJ, García-Fernández JManuel.  2017.  Quantitative proteomics shows extensive remodeling induced by nitrogen limitation in prochlorococcus marinus SS120. mSystems. 2:e00008–17.PDF icon Dominguez-Martin et al_2017_Quantitative proteomics shows extensive remodeling induced by nitrogen.pdf (3.74 MB)
Limardo AJ, Sudek S, Choi CJae, Poirier C, Rii YM, Blum M, Roth R, Goodenough U, Church MJ, Worden AZ.  2017.  Quantitative biogeography of picoprasinophytes establishes ecotype distributions and significant contributions to marine phytoplankton. Environmental Microbiology. PDF icon Limardo et al_2017_Quantitative biogeography of picoprasinophytes establishes ecotype.pdf (2.02 MB)
Biegala IC, Not F, Vaulot D, Simon N.  2003.  Quantitative assessment of picoeucaryotes in the natural environment using taxon specific oligonucleotide probes in association with TSA-FISH (Tyramide Signal Amplification - Fluorescent In Situ Hybridization) and flow cytometry. Applied and Environmental Microbiology. 69:5519–5529.PDF icon Biegala et al_2003_Quantitative assessment of picoeucaryotes in the natural environment using.pdf (1.23 MB)
Barton S, Yvon-Durocher G.  2019.  Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnology and Oceanography.
Fan X, Batchelor-McAuley C, Yang M, Barton S, Rickaby REM, Bouman HA, Compton RG.  2022.  Quantifying the Extent of Calcification of a Coccolithophore Using a Coulter Counter. Analytical Chemistry. :acs.analchem.2c01971.PDF icon Fan et al. - 2022 - Quantifying the Extent of Calcification of a Cocco.pdf (2.95 MB)

Pages