RCC2967

Phaeodactylum_tricornutum

Distributed

NB: Empty fields are hidden.

Please login or register to order strains

ABS compliance

Are users allowed to use this biological resource without applying for formal ABS authorization?
Yes - (B) Country of origin is party to the NP but no ABS authorization required (no national legislation)

ABS = Access & Benefit Sharing according to the Nagoya Protocol (NP) to the Convention for Biological Diversity (find out more here)
ABS Clearing House EMBRC step by step guide
IDENTITY

Phaeodactylum_tricornutum

Domain: 
Eukaryota
Division: 
Heterokontophyta
Class: 
Bacillariophyta_X
Order: 
Bacillariophyta_XX
Family: 
Phaeodactylaceae
Genus: 
Phaeodactylum
Strain name: 
Pt1_8.6
Strain name synonyms: 
CCAP 1055/1, Pt Gen,COUGH, CCMP632
Authentic culture: 
STATUS
Clonal: 
Axenic: 
Pure: 
Heterotrophic: 
Toxic: 
Symbiotic: 
Transformed: 
MORPHOLOGY
Cell shape: 
fusiform
Length: 
10.00
ORIGIN
Sampling ocean: 
Atlantic Ocean
Sampling site: 
off Blackpool
Sampling country: 
UK
Sampling ecosystem: 
pelagic
Sampling depth (m): 
0
Sampling date: 
Sunday, January 1, 1956
Isolation method: 
micropipette
CULTURE CONDITIONS
RCC medium: 
RCC temperature: 
20.00
RCC transfer period weeks: 
3.00
RCC light: 
100
Remark: 
Strain has been fully described in De Martino et al (2007) J Phycol 43: 992-109. Its genome has been sequenced in Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U. et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 456:239-44.
RCC Staff >
Details for RCC staff only
Date entered catalog: 
Thursday, May 31, 2012
Identification by: 
C. Bowler
Isolation growth temperature: 
19.00
Isolation medium: 
f/2
Isolation light: 
100
Deposit to RCC date: 
Wednesday, May 2, 2012
Deposit to rcc by: 
C. Bowler

Sequences available for this RCC strain

GenBank Accession Gene name Gene location Genome link Description
NZ_ABQD00000000 Genome nucleus Phaeodactylum tricornutum CCAP1055/1

Associated references

Displaying 1 - 8 of 8
Krasovec M, Sanchez-Brosseau S, Piganeau G.  2019.  First estimation of the spontaneous mutation rate in Diatoms. Genome Biology and Evolution. 1:1–23. PDF icon Download pdf (448.33 KB)
McQuaid JB, Kustka AB, Obornik M, Horak A, McCrow JP, Karas BJ, Zheng H, Kindeberg T, Andersson AJ, Barbeau KA et al..  2018.  Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature. 555:534–537. PDF icon Download pdf (2.97 MB)
Annunziata R, Ritter A, Fortunato AEmidio, Cheminant-Navarro S, Agier N, Huysman MJJ, Winge P, Bones A, Bouget F-Y, Lagomarsino MCosentino et al..  2018.  A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine diatom Phaeodactylum tricornutum. bioRxiv. :271445. PDF icon Download pdf (2.83 MB)
Rastogi A, Maheswari U, Dorrell RG, Vieira FRocha Jime, Maumus F, Kustka A, McCarthy J, Allen AE, Kersey P, Bowler C et al..  2018.  Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Scientific Reports. 8:4834. PDF icon Download pdf (3.16 MB)
Mizrachi A, Graff S, Creveld V, Shapiro OH, Rosenwasser S.  2018.  Phenotypic variability in chloroplast redox state predicts cell fate in a marine diatom. bioRxiv.
Avilan L, Lebrun R, Puppo C, Citerne S, Cuiné S, Li-Beisson Y, Menand B, Field B, Gontero B.  2020.  ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum tricornutum. bioRxiv. :2020.03.05.978130. PDF icon Download pdf (635.67 KB)
Kazamia E, Sutak R, Paz-Yepes J, Dorrell RG, Vieira FRocha Jime, Mach J, Morrissey J, Leon S, Lam F, Pelletier E et al..  2018.  Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Science Advances. 4:eaar4536. PDF icon Download pdf (2.15 MB)
Şi̇Ri̇N PAKDOĞAN, Serdar S.  2023.  Effects of Nitrogen Starvation on Growth and Biochemical Composition of Some Microalgae Species. PDF icon Download pdf (782.08 KB)