You are here

RCC1216

Emiliania_huxleyi

Distributed

NB: Empty fields are hidden.

Please login or register to order strains

ABS compliance

ABS = Access & Benefit Sharing according to the Nagoya Protocol to the Convention for Biological Diversity (find out more here)

ABS status: Compliant without conditions
ABS compliance details: No ABS permit needed : sampled pre-NP (no national legislation)
IDENTITY

Emiliania_huxleyi

Domain: 
Eukaryota
Division: 
Haptophyta
Class: 
Prymnesiophyceae
Order: 
Isochrysidales
Family: 
Noelaerhabdaceae
Genus: 
Emiliania
Strain name: 
AC472
Strain name synonyms: 
TQ26, NIES-2697, CCMP3266
STATUS
Clonal: 
Axenic: 
Pure: 
Heterotrophic: 
Toxic: 
Symbiotic: 
Transformed: 
MORPHOLOGY
Cell shape: 
spherical
Length: 
5.00
Cell motility: 
non-motile
ORIGIN
Sampling ocean: 
Pacific Ocean
Sampling regional sea: 
Tasman Sea
Sampling country: 
New Zealand
Sampling ecosystem: 
pelagic
Sampling cruise: 
TASQWA
Sampling date: 
Tuesday, September 1, 1998
CULTURE CONDITIONS
RCC medium: 
RCC temperature: 
17.00
RCC transfer period weeks: 
4.00
Remark: 
Transcriptome sequence done by Genoscope (2012) Morphotype R. Mitochondrial genotype Alpha..

Sequences available for this RCC strain

GenBank Accession Gene name Gene location Genbank organism Genbank taxonomy Description
AB563780 cox1b, atp4 mitochondrion Emiliania huxleyi Eukaryota; Haptophyceae; Isochrysidales; Noelaerhabdaceae; Emiliania Emiliania huxleyi mitochondrial cox1b, atp4 genes for cytochrome oxidase subunit 1b, adenosine triphosphate 4, partial cds, strain: TQ26
JN098173 cox3 mitochondrion Emiliania huxleyi Eukaryota; Haptophyceae; Isochrysidales; Noelaerhabdaceae; Emiliania Emiliania huxleyi strain RCC1216 cytochrome c oxidase subunit III (cox3) gene, complete cds; mitochondrial
LN735233 16S rRNA plastid Emiliania huxleyi Eukaryota; Haptophyceae; Isochrysidales; Noelaerhabdaceae; Emiliania Emiliania huxleyi chloroplast partial 16S rRNA gene, strain RCC 1216
JN098173 cox3 mitochondrion Emiliania huxleyi Eukaryota; Haptophyceae; Isochrysidales; Noelaerhabdaceae; Emiliania Emiliania huxleyi strain RCC1216 cytochrome c oxidase subunit III (cox3) gene, complete cds; mitochondrial

Associated references

Displaying 1 - 15 of 15
McClelland H, Bruggeman J., Hermoso M., Rickaby REM.  2017.  The origin of carbon isotope vital effects in coccolith calcite. Nature Communications. 8:1–16. PDF icon Download pdf (708.71 KB)
Ruiz E, Oosterhof M, Sandaa R-A, Larsen A, Pagarete A.  2017.  Emerging Interaction Patterns in the Emiliania huxleyi-EhV System. Viruses. 9:61. PDF icon Download pdf (1.61 MB)
Kottmeier DM, Rokitta SD, Rost B.  2016.  Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi. New Phytologist. 211:126–137. PDF icon Download pdf (713.49 KB)
McClelland H.LO, Barbarin N., Beaufort L., Hermoso M., Ferretti P., Greaves M., Rickaby R.EM.  2016.  Calcification response of a key phytoplankton family to millennial-scale environmental change. Scientific Reports. 6:34263. PDF icon Download pdf (1.63 MB)
Blanco-Ameijeiras S, Lebrato M, Stoll HM, Iglesias-Rodriguez D, Müller MN, Méndez-Vicente A, Oschlies A.  2016.  Phenotypic Variability in the Coccolithophore Emiliania huxleyi.. PloS one. 11:e0157697. PDF icon Download pdf (1 MB)
Green DH, Echavarri-bravo V, Brennan D, Hart MC.  2015.  Bacterial diversity associated with the coccolithophorid algae Emiliania huxleyi and Coccolithus pelagicus f . braarudii Bacterial Diversity Associated with the Coccolithophorid Algae Emiliania huxleyi and Coccolithus pelagicus f . braarudii. 2015 PDF icon Download pdf (2.92 MB)
von Dassow P, John U, Ogata H, Probert I, Bendif EMahdi, Kegel JU, Audic S, Wincker P, Da Silva C, Claverie J-M et al..  2015.  Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. The ISME Journal. 9:1365–1377. PDF icon Download pdf (2.44 MB)
von Dassow P, Ogata H, Probert I, Wincker P, Da Silva C, Audic S, Claverie J-M, de Vargas C.  2009.  Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biology. 10:R114. PDF icon Download pdf (1.19 MB)
Trainic M, Koren I, Sharoni S, Frada M, Segev L, Rudich Y, Vardi A.  2018.  Infection Dynamics of a Bloom-Forming Alga and Its Virus Determine Airborne Coccolith Emission from Seawater. iScience. PDF icon Download pdf (3.32 MB), PDF icon Download pdf (973.55 KB)
Barak-Gavish N, Frada MJosé, Ku C, Lee PA, DiTullio GR, Malitsky S, Aharoni A, Green SJ, Rotkopf R, Kartvelishvily E et al..  2018.  Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Science Advances. 4:eaau5716. PDF icon Download pdf (1.55 MB)
Walker JM, Marzec B, Lee RBY, Vodrazkova K, Day SJ, Tang CC, Rickaby REM, Nudelman F.  2019.  Polymorph Selectivity of Coccolith-Associated Polysaccharides from Gephyrocapsa Oceanica on Calcium Carbonate Formation In Vitro. Advanced Functional Materials. 29:1807168. PDF icon Download pdf (2.45 MB)
Langer G, Probert I, Nehrke G, Ziveri P.  2011.  The morphological response of Emiliania huxleyi to seawater carbonate chemistry changes: an inter-strain comparison. Journal of Nannoplankton Research. 32:29–34. PDF icon Download pdf (433.3 KB)
Rokitta SD, Rost B.  2012.  Effects of CO 2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnology and Oceanography. 57:607–618. PDF icon Download pdf (628.03 KB)
Hoffmann L, Bottini C, Erba E, Bach LT, Riebesell U, Faucher G.  2017.  Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Biogeosciences. 14:3603–3613. PDF icon Download pdf (13.72 MB)
Beuvier T., Probert I., Beaufort L., Suchéras-Marx B., Chushkin Y., Zontone F., Gibaud A..  2019.  X-ray nanotomography of coccolithophores reveals that coccolith mass and segment number correlate with grid size. Nature Communications. 10:751. PDF icon Download pdf (3.16 MB)