RCC references

Export 285 results:
Author Title [ Year(Desc)]
Filters: First Letter Of Last Name is C  [Clear All Filters]
2022
Guérin N, Ciccarella M, Flamant E, Frémont P, Mangenot S, Istace B, Noel B, Belser C, Bertrand L, Labadie K et al..  2022.  Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence. Communications Biology. 5:1–14.PDF icon Guerin et al_2022_Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor.pdf (4.25 MB)
Guérin N, Ciccarella M, Flamant E, Frémont P, Mangenot S, Istace B, Noel B, Belser C, Bertrand L, Labadie K et al..  2022.  Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence. Communications Biology. 5:1–14.PDF icon Guerin et al_2022_Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor.pdf (4.25 MB)
Doré H, Leconte J, Guyet U, Breton S, Farrant GK, Demory D, Ratin M, Hoebeke M, Corre E, Pitt FD et al..  2022.  Global Phylogeography of Marine Synechococcus in Coastal Areas Reveals Strong Community Shifts. mSystems. :e00656–22.PDF icon Dore et al_2022_Global Phylogeography of Marine Synechococcus in Coastal Areas Reveals Strong.pdf (1.87 MB)
Vázquez V, León P, Gordillo FJL, Jiménez C, Concepción I, Mackenzie K, Bresnan E, Segovia M.  2022.  High-CO2 Levels Rather than Acidification Restrict Emiliania huxleyi Growth and Performance. Microbial Ecology. PDF icon Vazquez et al_2022_High-CO2 Levels Rather than Acidification Restrict Emiliania huxleyi Growth and.pdf (1.81 MB)
Fernandes T, Cordeiro N.  2022.  High-value lipids accumulation by Pavlova pinguis as a response to nitrogen-induced changes. Biomass and Bioenergy. 158:106341.PDF icon Fernandes et Cordeiro - 2022 - High-value lipids accumulation by Pavlova pinguis .pdf (3.94 MB)
Falciatore A, Bailleul B, Boulouis A, Bouly J-P, Bujaldon S, Cheminant-Navarro S, Choquet Y, de Vitry C, Eberhard S, Jaubert M et al..  2022.  Light-driven processes: key players of the functional biodiversity in microalgae. Comptes Rendus. Biologies. 345:1–24.PDF icon Falciatore et al_2022_Light-driven processes.pdf (2.62 MB)
Falciatore A, Bailleul B, Boulouis A, Bouly J-P, Bujaldon S, Cheminant-Navarro S, Choquet Y, de Vitry C, Eberhard S, Jaubert M et al..  2022.  Light-driven processes: key players of the functional biodiversity in microalgae. Comptes Rendus. Biologies. 345:1–24.PDF icon Falciatore et al_2022_Light-driven processes.pdf (2.62 MB)
Castejón D, Nogueira N, Andrade CAP.  2022.  Limpet larvae (Patella aspera Röding, 1798), obtained by gonad dissection and fecundation in vitro, settled and metamorphosed on crustose coralline algae. Journal of the Marine Biological Association of the United Kingdom. :1–12.PDF icon Castejon et al_2022_Limpet larvae (Patella aspera Roding, 1798), obtained by gonad dissection and.pdf (901.99 KB)
Gómez F, Gourvil P, Li T, Huang Y, Zhang H, Courcot L, Artigas LF, Onís ESoler, Gutierrez-Rodriguez A, Lin S.  2022.  Molecular phylogeny of the spiny-surfaced species of the dinoflagellate Prorocentrum with the description of P. Thermophilum sp. nov. and P. criophilum sp. nov. (Prorocentrales, Dinophyceae). Journal of Phycology. n/aPDF icon Gómez et al. - Molecular phylogeny of the spiny-surfaced species .pdf (26.8 MB)
Lacour T, Larivière J, Ferland J, Morin P-I, Grondin P-L, Donaher N, Cockshutt A, Campbell DA, Babin M.  2022.  Photoacclimation of the polar diatom Chaetoceros neogracilis at low temperature. PLOS ONE. 17:e0272822.PDF icon Lacour et al_2022_Photoacclimation of the polar diatom Chaetoceros neogracilis at low temperature.pdf (2.08 MB)
Lacour T, Larivière J, Ferland J, Morin P-I, Grondin P-L, Donaher N, Cockshutt A, Campbell DA, Babin M.  2022.  Photoacclimation of the polar diatom Chaetoceros neogracilis at low temperature. PLOS ONE. 17:e0272822.PDF icon Lacour et al_2022_Photoacclimation of the polar diatom Chaetoceros neogracilis at low temperature.pdf (2.08 MB)
Carrigee LA, Frick JP, Liu X, Karty JA, Trinidad JC, Tom IP, Yang X, Dufour L, Partensky F, Schluchter WM.  2022.  The phycoerythrobilin isomerization activity of MpeV in Synechococcus sp. WH8020 is prevented by the presence of a histidine at position 141 within its phycoerythrin-I β-subunit substrate. Frontiers in Microbiology. 13:1011189.PDF icon Carrigee et al_2022_The phycoerythrobilin isomerization activity of MpeV in Synechococcus sp.pdf (5.76 MB)
Akita S, Vieira C, Hanyuda T, Rousseau F, Cruaud C, Couloux A, Heesch S, J. Cock M, Kawai H.  2022.  Providing a phylogenetic framework for trait-based analyses in brown algae: Phylogenomic tree inferred from 32 nuclear protein-coding sequences. Molecular Phylogenetics and Evolution. 168:107408.
Akita S, Vieira C, Hanyuda T, Rousseau F, Cruaud C, Couloux A, Heesch S, J. Cock M, Kawai H.  2022.  Providing a phylogenetic framework for trait-based analyses in brown algae: Phylogenomic tree inferred from 32 nuclear protein-coding sequences. Molecular Phylogenetics and Evolution. 168:107408.
Akita S, Vieira C, Hanyuda T, Rousseau F, Cruaud C, Couloux A, Heesch S, J. Cock M, Kawai H.  2022.  Providing a phylogenetic framework for trait-based analyses in brown algae: Phylogenomic tree inferred from 32 nuclear protein-coding sequences. Molecular Phylogenetics and Evolution. 168:107408.
Fan X, Batchelor-McAuley C, Yang M, Barton S, Rickaby REM, Bouman HA, Compton RG.  2022.  Quantifying the Extent of Calcification of a Coccolithophore Using a Coulter Counter. Analytical Chemistry. :acs.analchem.2c01971.PDF icon Fan et al. - 2022 - Quantifying the Extent of Calcification of a Cocco.pdf (2.95 MB)
Pilátová J, Pánek T, Obornik M, Čepička I, Mojzeš P.  2022.  Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. The ISME Journal. PDF icon Pilátová et al. - 2022 - Revisiting biocrystallization purine crystalline .pdf (4.85 MB)PDF icon 41396_2022_1264_MOESM1_ESM.pdf (3.69 MB)
de la Broise D, Ventura M, Chauchat L, Guerreiro M, Michez T, Vinet T, Gautron N, Le Grand F, Bideau A, Le Goïc N et al..  2022.  Scale-Up to Pilot of a Non-Axenic Culture of Thraustochytrids Using Digestate from Methanization as Nitrogen Source. Marine Drugs. 20:499.PDF icon de la Broise et al. - 2022 - Scale-Up to Pilot of a Non-Axenic Culture of Thrau.pdf (4.81 MB)
Croteau D., Lacour T., Schiffrine N., Morin P.-I., Forget M.-H., Bruyant F., Ferland J., Lafond A., Campbell D.A, Tremblay J.-E. et al..  2022.  Shifts in growth light optima among diatom species support their succession during the spring bloom in the Arctic. Journal of Ecology. n/aPDF icon Croteau et al. - Shifts in growth light optima among diatom species.pdf (1.52 MB)
Croteau D., Lacour T., Schiffrine N., Morin P.-I., Forget M.-H., Bruyant F., Ferland J., Lafond A., Campbell D.A, Tremblay J.-E. et al..  2022.  Shifts in growth light optima among diatom species support their succession during the spring bloom in the Arctic. Journal of Ecology. n/aPDF icon Croteau et al. - Shifts in growth light optima among diatom species.pdf (1.52 MB)
Caló G, De Marco MAgustina, Salerno GLidia, Martínez-Noël GMaría Ast.  2022.  TOR signaling in the green picoalga Ostreococcus tauri. Plant Science. 323:111390.
2023
Strauss J, Choi CJae, Grone J, Wittmers F, Jimenez V, Makareviciute-Fichtner K, Bachy C, Jaeger GSpiro, Poirier C, Eckmann C et al..  2023.  The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound diversity along salinity-driven gradients. Environmental Microbiology. PDF icon Strauss et al_2023_The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound.pdf (7.31 MB)
Churakova Y, Aguilera A, Charalampous E, Conley DJ, Lundin D, Pinhassi J, Farnelid H.  2023.  Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle. Environmental Microbiology Reports. n/aPDF icon Churakova et al_2023_Biogenic silica accumulation in picoeukaryotes.pdf (454.16 KB)
Churakova Y, Aguilera A, Charalampous E, Conley DJ, Lundin D, Pinhassi J, Farnelid H.  2023.  Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle. Environmental Microbiology Reports. n/aPDF icon Churakova et al_2023_Biogenic silica accumulation in picoeukaryotes.pdf (454.16 KB)
Churakova Y, Aguilera A, Charalampous E, Conley DJ, Lundin D, Pinhassi J, Farnelid H.  2023.  Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle. Environmental Microbiology Reports. n/aPDF icon Churakova et al_2023_Biogenic silica accumulation in picoeukaryotes.pdf (454.16 KB)

Pages