RCC references

Export 586 results:
[ Author(Asc)] Title Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Fiore CL, Alexander H, Soule MCKido, Kujawinski EB.  2018.  A phosphate starvation response gene (psr1-like) is present and expressed in Micromonas pusilla and other marine algae. bioRxiv. PDF icon Fiore et al_2018_A phosphate starvation response gene (psr1-like) is present and expressed in.pdf (666.41 KB)
Filatov DA, Bendif EMahdi, Archontikis OA, Hagino K, Rickaby REM.  2021.  The mode of speciation during a recent radiation in open-ocean phytoplankton. Current Biology. PDF icon Filatov et al_2021_The mode of speciation during a recent radiation in open-ocean phytoplankton.pdf (2.65 MB)
Ferrieux M, Dufour L, Doré H, Ratin M, Guéneuguès A, Chasselin L, Marie D, Rigaut-jalabert F, Le Gall F, Sciandra T et al..  2022.  Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas. Frontiers in Microbiology. 13PDF icon Ferrieux et al_2022_Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From.pdf (2.17 MB)
Fernandes T, Cordeiro N.  2020.  Hemiselmis andersenii and chlorella stigmatophora as new sources of High-value compounds: A lipidomic approach. Journal of Phycology. :jpy.13042.
Fernandes T, Ferreira A, Cordeiro N.  2021.  Comparative lipidomic analysis of Chlorella stigmatophora and Hemiselmis cf. andersenii in response to nitrogen-induced changes. Algal Research. 58:102417.
Fernandes T, Cordeiro N.  2022.  Effects of phosphorus-induced changes on the growth, nitrogen uptake, and biochemical composition of Pavlova pinguis and Hemiselmis cf. andersenii. Journal of Applied Phycology. PDF icon Fernandes_Cordeiro_2022_Effects of phosphorus-induced changes on the growth, nitrogen uptake, and.pdf (1.79 MB)
Fernandes T, Cordeiro N.  2022.  High-value lipids accumulation by Pavlova pinguis as a response to nitrogen-induced changes. Biomass and Bioenergy. 158:106341.PDF icon Fernandes et Cordeiro - 2022 - High-value lipids accumulation by Pavlova pinguis .pdf (3.94 MB)
Fenizia S, Weissflog J, Pohnert G.  2021.  Cysteinolic Acid Is a Widely Distributed Compatible Solute of Marine Microalgae. Marine Drugs. 19:683.PDF icon Fenizia et al_2021_Cysteinolic Acid Is a Widely Distributed Compatible Solute of Marine Microalgae.pdf (997.08 KB)
Fawley MW, Yun Y, Qin M.  2000.  Phylogenetic analyses of 18S rDNA sequences reveal a new coccoid lineage of the Prasinophyceae (Chlorophyta). Journal of Phycology. 36:387–393.PDF icon Fawley et al_2000_Phylogenetic analyses of 18S rDNA sequences reveal a new coccoid lineage of the.pdf (850.93 KB)
Faucher G, Hoffmann L, Bach LT, Bottini C, Erba E, Riebesell U.  2017.  Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Biogeosciences. 14:3603–3613.PDF icon Faucher et al. - 2017 - Impact of trace metal concentrations on coccolitho.pdf (13.72 MB)
Farinas B, Mary C, Manes CLara De O, Bhaud Y, Peaucellier G, Moreau H.  2006.  Natural synchronisation for the study of cell division in the green unicellular alga Ostreococcus tauri. Plant Molecular Biology. 60:277–292.PDF icon Farinas et al_2006_Natural synchronisation for the study of cell division in the green unicellular.pdf (827.98 KB)
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, Maumus F, Florent I, Alberti A, Aury J-M et al..  2021.  Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp.. BMC Biology. :1–21.PDF icon Farhat et al_2021_Rapid protein evolution, organellar reductions, and invasive intronic elements.pdf (2.01 MB)
Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, Alberti A, Labadie K, Corre E, Aury J-M et al..  2018.  Comparative time-scale gene expression analysis highlights the infection processes of two amoebophrya strains. Frontiers in Microbiology. 9:1–19.PDF icon Farhat et al_2018_Comparative time-scale gene expression analysis highlights the infection.pdf (2.61 MB)
Fan X, Batchelor-McAuley C, Yang M, Barton S, Rickaby REM, Bouman HA, Compton RG.  2022.  Quantifying the Extent of Calcification of a Coccolithophore Using a Coulter Counter. Analytical Chemistry. :acs.analchem.2c01971.PDF icon Fan et al. - 2022 - Quantifying the Extent of Calcification of a Cocco.pdf (2.95 MB)
Falciatore A, Bailleul B, Boulouis A, Bouly J-P, Bujaldon S, Cheminant-Navarro S, Choquet Y, de Vitry C, Eberhard S, Jaubert M et al..  2022.  Light-driven processes: key players of the functional biodiversity in microalgae. Comptes Rendus. Biologies. 345:1–24.PDF icon Falciatore et al_2022_Light-driven processes.pdf (2.62 MB)
E
Eyal Z, Krounbi L, Ben Joseph O, Avrahami EM, Pinkas I, Peled-Zehavi H, Gal A.  2022.  The variability in the structural and functional properties of coccolith base plates. Acta Biomaterialia. 148:336–344.
Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM.  2006.  Biochemical bases of Type IV chromatic adaptation in marine Synechococcus spp.. Journal of Bacteriology. 188:3345–3356.PDF icon Everroad et al_2006_Biochemical bases of Type IV chromatic adaptation in marine Synechococcus spp.pdf (559.03 KB)
Engesmo A, Eikrem W, Seoane S, Smith K, Edvardsen B, Hofgaard A, Tomas CR.  2016.  New insights into the morphology and phylogeny of Heterosigma akashiwo (Raphidophyceae), with the description of Heterosigma minor sp. nov .. Phycologia. 55:279–294.PDF icon Engesmo et al_2018_Development of a qPCR assay to detect and quantify ichthyotoxic flagellates.pdf (2.81 MB)
Engesmo A, Strand D, Gran-Stadniczeñko S, Edvardsen B, Medlin LK, Eikrem W.  2018.  Development of a qPCR assay to detect and quantify ichthyotoxic flagellates along the Norwegian coast, and the first Norwegian record of Fibrocapsa japonica (Raphidophyceae). Harmful Algae. 75:105–117.
Eich C.  2021.  Effects of UV Radiation on the Chlorophyte Micromonas polaris Host–Virus Interactions and MpoV-45T Virus Infectivity. Microorganisms. 9:2429.PDF icon Eich - 2021 - Effects of UV Radiation on the Chlorophyte Micromo.pdf (1.7 MB)
Edvardsen B, Egge ESirnaes, Vaulot D.  2016.  Diversity and distribution of haptophytes revealed by environmental sequencing and metabarcoding – a review. Perspectives in Phycology. 3:77–91.PDF icon Edvardsen et al_2016_Diversity and distribution of haptophytes revealed by environmental sequencing.pdf (335.47 KB)
Edvardsen B, Eikrem W, Throndsen J, A. S, Probert I, Medlin L.  2011.  Ribosomal DNA phylogenies and a morphological revision privide the basis for a new taxonomy of Prymnesiales (Haptophyta). European Journal of Phycology. 46:202–228.PDF icon Edvardsen et al_2011_Ribosomal DNA phylogenies and a morphological revision privide the basis for a.pdf (298.42 KB)
Edullantes B, Low-Decarie E, Steinke M, Cameron T.  2023.  Comparison of thermal traits between non-toxic and potentially toxic marine phytoplankton: Implications to their responses to ocean warming. Journal of Experimental Marine Biology and Ecology. 562:151883.PDF icon Edullantes et al. - 2023 - Comparison of thermal traits between non-toxic and.pdf (6.9 MB)
Edullantes B.  2020.  Thermal responses of marine phytoplankton : Implications to their biogeography in the present and future oceans. PDF icon Edullantes_2020_Thermal responses of marine phytoplankton.pdf (66.93 MB)
Ebenezer V, Hu Y, Carnicer O, Irwin AJ, Follows MJ, Finkel ZV.  2022.  Elemental and macromolecular composition of the marine Chloropicophyceae, a major group of oceanic photosynthetic picoeukaryotes. Limnology and Oceanography. n/aPDF icon Ebenezer et al_Elemental and macromolecular composition of the marine Chloropicophyceae, a.pdf (1.61 MB)

Pages