RCC references

Export 586 results:
Author [ Title(Asc)] Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Vázquez V, León P, Gordillo FJL, Jiménez C, Concepción I, Mackenzie K, Bresnan E, Segovia M.  2022.  High-CO2 Levels Rather than Acidification Restrict Emiliania huxleyi Growth and Performance. Microbial Ecology. PDF icon Vazquez et al_2022_High-CO2 Levels Rather than Acidification Restrict Emiliania huxleyi Growth and.pdf (1.81 MB)
Garcia NS, Sexton J, Riggins T, Brown J, Lomas MW, Martiny AC.  2018.  High variability in cellular stoichiometry of carbon, nitrogen, and phosphorus within classes of marine eukaryotic phytoplankton under sufficient nutrient conditions. Frontiers in Microbiology. 9:1–10.PDF icon Garcia et al_2018_High variability in cellular stoichiometry of carbon, nitrogen, and phosphorus.pdf (2.18 MB)
Bottini C, Dapiaggi M, Erba E, Faucher G, Rotiroti N.  2020.  High resolution spatial analyses of trace elements in coccoliths reveal new insights into element incorporation in coccolithophore calcite. Scientific Reports. 10:9825.PDF icon Bottini et al. - 2020 - High resolution spatial analyses of trace elements.pdf (9.04 MB)
Scanlan DJ, Hess WR, Partensky F, Newman J, Vaulot D.  1996.  High degree of genetic variation in Prochlorococcus (Prochlorophyta) revealed by RFLP analysis. European Journal of Phycology. 31:1–9.PDF icon Scanlan et al_1996_High degree of genetic variation in Prochlorococcus (Prochlorophyta) revealed.pdf (966.95 KB)
Xu Y, Leung SKK, Li TMW, Yung CCM.  2024.  Hidden genomic diversity drives niche partitioning in a cosmopolitan eukaryotic picophytoplankton. The ISME Journal. :wrae163.PDF icon Xu et al_2024_Hidden genomic diversity drives niche partitioning in a cosmopolitan eukaryotic.pdf (2.44 MB)
Magalhães K, Santos ALopes dos, Vaulot D, de Oliveira MCabral.  2021.  Hemiselmis aquamarina sp . nov . (Cryptomonadales , Cryptophyceae), a cryptomonad with a novel phycobiliprotein type (Cr-PC 564). Protist. in pressPDF icon Magalhaes et al_2021_Hemiselmis aquamarina sp.pdf (3.8 MB)
Fernandes T, Cordeiro N.  2020.  Hemiselmis andersenii and chlorella stigmatophora as new sources of High-value compounds: A lipidomic approach. Journal of Phycology. :jpy.13042.
G
Ota S, Kudo A, Ishida K.  2011.  Gymnochlora dimorpha sp. nov., a chlorarachniophyte with unique daughter cell behaviour.. Phycologia. 50:317–326.PDF icon Ota et al_2011_Gymnochlora dimorpha sp.pdf (2.82 MB)
Frada M, Young J, Cachão M, Lino S, Martins A, Narciso Á, Probert I, de Vargas C.  2010.  A guide to extant coccolithophores (Calcihaptophycidae, Haptophyta) using light microscopy.. Journal of Nannoplankton Research. 31:58–112.PDF icon Frada et al_2010_A guide to extant coccolithophores (Calcihaptophycidae, Haptophyta) using light.pdf (2.52 MB)
Schmidt M, Horn S, Ehlers K, Wilhelm C, Schnetter R.  2015.  Guanchochroma wildpretii gen. et spec. nov. (ochrophyta) provides new insights into the diversification and evolution of the algal class synchromophyceae.. PloS one. 10:e0131821.PDF icon Schmidt et al_2015_Guanchochroma wildpretii gen.pdf (4.34 MB)
Zhang Y, Li Z, Schulz KG, Hu Y, Irwin AJ, Finkel ZV.  2021.  Growth-dependent changes in elemental stoichiometry and macromolecular allocation in the coccolithophore Emiliania huxleyi under different environmental conditions. Limnology and Oceanography. 66:2999–3009.PDF icon Zhang et al. - 2021 - Growth-dependent changes in elemental stoichiometr.pdf (312.78 KB)
Wolhowe MD, Prahl FG, Probert I, Maldonado M.  2009.  Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes. Biogeosciences. 6:1681–1694.PDF icon Wolhowe et al_2009_Growth phase dependent hydrogen isotopic fractionation in alkenone-producing.pdf (770.38 KB)
López-Pacheco IY, Ayala-Moreno VGuadalupe, Mejia-Melara CArlette, Rodríguez-Rodríguez J, Cuellar-Bermudez SP, González-González RBerenice, Coronado-Apodaca KG, Farfan-Cabrera LI, González-Meza GMaría, Iqbal HMN et al..  2023.  Growth Behavior, Biomass Composition and Fatty Acid Methyl Esters (FAMEs) Production Potential of Chlamydomonas reinhardtii, and Chlorella vulgaris Cultures. Marine Drugs. 21:450.PDF icon López-Pacheco et al. - 2023 - Growth Behavior, Biomass Composition and Fatty Aci.pdf (2.38 MB)
Giovagnetti V, Cataldo ML, Conversano F, Brunet C.  2012.  Growth and photophysiological responses of two picoplanktonic ¡i¿Minutocellus species¡/i¿, strains RCC967 and RCC703 (Bacillariophyceae). European Journal of Phycology. 47:408–420.PDF icon Giovagnetti et al_2012_Growth and photophysiological responses of two picoplanktonic ¡i¿Minutocellus.pdf (912.82 KB)
Schiffrine N, Tremblay J-éric, Babin M.  2020.  Growth and elemental stoichiometry of the ecologically-relevant arctic diatom chaetoceros gelidus: A mix of polar and temperate. Frontiers in Marine Science. 6PDF icon Schiffrine et al_2020_Growth and elemental stoichiometry of the ecologically-relevant arctic diatom.pdf (1.05 MB)
Wang KJiaxi, Huang Y, Majaneva M, Belt ST, Liao S, Novak J, Kartzinel TR, Herbert TD, Richter N, Cabedo-Sanz P.  2021.  Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice distribution. Nature Communications. 12:15.PDF icon Wang et al_2021_Group 2i Isochrysidales produce characteristic alkenones reflecting sea ice.pdf (2.14 MB)
Liao S, Huang Y.  2022.  Group 2i Isochrysidales flourishes at exceedingly low growth temperatures (0 to 6 °C). Organic Geochemistry. :104512.PDF icon Liao et Huang - 2022 - Group 2i Isochrysidales flourishes at exceedingly .pdf (862.05 KB)
Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS.  2011.  The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. Journal of Biological Chemistry. 286:21427–21439.PDF icon Karpowicz et al_2011_The GreenCut2 resource, a phylogenomically derived inventory of proteins.pdf (1.45 MB)
Worden AZ, Lee J.-H, Mock T, Rouzé P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV et al..  2009.  Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science. 324:268–272.
Guillou L, Jacquet S, Chrétiennot-Dinet M.-J., Vaulot D.  2001.  Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus. Aquatic Microbial Ecology. 26:201–207.PDF icon Guillou et al_2001_Grazing impact of two small heterotrophic flagellates on Prochlorococcus and.pdf (32 KB)
Degraeve-Guilbault C, Bréhélin C, Haslam R, Sayanova O, Marie-Luce G, Jouhet J, Corellou F.  2017.  Glycerolipid characterization and nutrient deprivation-associated changes in the green picoalga ostreococcus tauri. Plant Physiology. 173:2060–2080.PDF icon Degraeve-Guilbault et al_2017_Glycerolipid characterization and nutrient deprivation-associated changes in.pdf (2.8 MB)
Doré H, Leconte J, Guyet U, Breton S, Farrant GK, Demory D, Ratin M, Hoebeke M, Corre E, Pitt FD et al..  2022.  Global Phylogeography of Marine Synechococcus in Coastal Areas Reveals Strong Community Shifts. mSystems. :e00656–22.PDF icon Dore et al_2022_Global Phylogeography of Marine Synechococcus in Coastal Areas Reveals Strong.pdf (1.87 MB)
Chamnansinp A, Li Y, Lundholm N, Moestrup Ø.  2013.  Global diversity of two widespread, colony-forming diatoms of the marine plankton, Chaetoceros socialis (syn. C. radians ) and Chaetoceros gelidus sp. nov.. Journal of Phycology. 49:1128–1141.PDF icon Chamnansinp et al_2013_Global diversity of two widespread, colony-forming diatoms of the marine.pdf (3.02 MB)
Demir-Hilton E, Sudek S, Cuvelier ML, Gentemann CL, Zehr JP, Worden AZ.  2011.  Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. The ISME journal. 5:1095–1107.PDF icon Demir-Hilton et al_2011_Global distribution patterns of distinct clades of the photosynthetic.pdf (5.04 MB)
Slapeta J, López-García P, Moreira D.  2006.  Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Molecular Biology and Evolution. 23:23–29.PDF icon Slapeta et al_2006_Global dispersal and ancient cryptic species in the smallest marine eukaryotes.pdf (538.25 KB)

Pages