RCC references

Export 568 results:
[ Author(Asc)] Title Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Liu H, Probert I, Uitz J, Claustre H, Aris-Brossou S, Frada M, Not F, de Vargas C.  2009.  Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proceedings of the National Academy of Sciences of the United States of America. 106:12803–12808.PDF icon Liu et al_2009_Extreme diversity in noncalcifying haptophytes explains a major pigment paradox.pdf (1.68 MB)
Liu H, Aris-Brosou S, Probert I, de Vargas C.  2010.  A timeline of the environmental genetics of the haptophytes. Molecular Biology and Evolution. 27:171–176.
Liu F, Gledhill M, Tan Q-G, Zhu K, Zhang Q, Salaün P, Tagliabue A, Zhang Y, Weiss D, Achterberg EP et al..  2022.  Phycosphere pH of unicellular nano- and micro- phytoplankton cells and consequences for iron speciation. The ISME Journal. 16:2329–2336.PDF icon Liu et al_2022_Phycosphere pH of unicellular nano- and micro- phytoplankton cells and.pdf (1.5 MB)
Liu Z, Mesrop LY, Hu SK, Caron DA.  2019.  Transcriptome of thalassicolla nucleata holobiont reveals details of a radiolarian symbiotic relationship. Frontiers in Marine Science. 6:1–11.PDF icon Liu et al_2019_Transcriptome of thalassicolla nucleata holobiont reveals details of a.pdf (7.84 MB)
Limardo AJ, Sudek S, Choi CJae, Poirier C, Rii YM, Blum M, Roth R, Goodenough U, Church MJ, Worden AZ.  2017.  Quantitative biogeography of picoprasinophytes establishes ecotype distributions and significant contributions to marine phytoplankton. Environmental Microbiology. PDF icon Limardo et al_2017_Quantitative biogeography of picoprasinophytes establishes ecotype.pdf (2.02 MB)
Lim H, Tanaka A, Tanaka R, Ito H.  2019.  In vitro enzymatic activity assays implicate the existence of the chlorophyll cycle in chlorophyll b-Containing cyanobacteria. Plant and Cell Physiology. :1–12.PDF icon Lim et al_2019_In vitro enzymatic activity assays implicate the existence of the chlorophyll.pdf (1.35 MB)
Liefer JD, Garg A, Campbell DA, Irwin AJ, Finkel ZV.  2018.  Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. PLOS ONE. 13:e0195705.PDF icon Liefer et al_2018_Nitrogen starvation induces distinct photosynthetic responses and recovery.pdf (5.05 MB)
Liao S, Novak J, Huang Y.  2023.  Exploring the theoretical upper temperature limit of alkenone unsaturation indices: Implications for paleotemperature reconstructions. Organic Geochemistry. 180:104606.PDF icon Liao et al_2023_Exploring the theoretical upper temperature limit of alkenone unsaturation.pdf (2.71 MB)
Liao S, Huang Y.  2022.  Group 2i Isochrysidales flourishes at exceedingly low growth temperatures (0 to 6 °C). Organic Geochemistry. :104512.PDF icon Liao et Huang - 2022 - Group 2i Isochrysidales flourishes at exceedingly .pdf (862.05 KB)
Liao S, Yao Y, Wang L, Wang KJ, Amaral-Zettler L, Longo WM, Huang Y.  2020.  C41 methyl and C42 ethyl alkenones are biomarkers for Group II Isochrysidales. Organic Geochemistry. 147:104081.
Letscher RT, J. Moore K, Martiny AC, Lomas MW.  2023.  Biodiversity and stoichiometric plasticity increase pico-phytoplankton contributions to marine net primary productivity and the biological pump. Global Biogeochemical Cycles. n/a:e2023GB007756.PDF icon Letscher et al_Biodiversity and stoichiometric plasticity increase pico-phytoplankton.pdf (1.21 MB)
Lepere C, Demura M, Kawachi M, Romac S, Probert I, Vaulot D.  2011.  Whole Genome Amplification (WGA) of marine photosynthetic eukaryote populations. FEMS Microbiology Ecology. 76:516–523.PDF icon Lepere et al_2011_Whole Genome Amplification (WGA) of marine photosynthetic eukaryote populations.pdf (522.37 KB)
Lepelletier F, Karpov SA, Le Panse S, Bigeard E, Skovgaard A, Jeanthon C, Guillou L.  2014.  Parvilucifera rostrata sp. nov., a novel parasite in the phylum Perkinsozoa that infects the toxic dinoflagellate Alexandrium minutum (Dinophyceae). Protist. 165:31–49.PDF icon Lepelletier et al_2014_Parvilucifera rostrata sp.pdf (17.84 MB)
Lepelletier F, Karpov SA, Alacid E, Le Panse S, Bigeard E, Garcés E, Jeanthon C, Guillou L.  2014.  Dinomyces arenysensis gen. et sp. nov. (rhizophydiales, dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist. 165:230–244.PDF icon Lepelletier et al_2014_Dinomyces arenysensis gen.pdf (16.28 MB)
Leliaert F, Tronholm A, Lemieux C, Turmel M, DePriest MS, Bhattacharya D, Karol KG, Fredericq S, Zechman FW, Lopez-Bautista JM.  2016.  Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.. Scientific Reports. 6:25367.PDF icon Leliaert et al_2016_Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the.pdf (2.32 MB)
Leconte, Benites, Vannier, Wincker, Piganeau, Jaillon.  2020.  Genome resolved biogeography of mamiellales. Genes. 11:66.PDF icon Leconte et al_2020_Genome resolved biogeography of mamiellales.pdf (1.03 MB)
Leblond JD, Elkins LC, Graeff JE, Sabir K.  2022.  Galactolipids of the genus Amphidinium (Dinophyceae): an hypothesis that they are basal to those of other peridinin-containing dinoflagellates. European Journal of Phycology. :1–10.PDF icon Leblond et al_2022_Galactolipids of the genus Amphidinium (Dinophyceae).pdf (2.64 MB)
Leblond JD, Elkins LC, Sabir K, Graeff JE.  2022.  Sterols of Testudodinium testudo (formerly Amphidinium testudo): Production of the Δ8(14) sterol gymnodinosterol and chemotaxonomic relationship to the Kareniaceae. Journal of Eukaryotic Microbiology. n/a:e12929.PDF icon Leblond et al_Sterols of Testudodinium testudo (formerly Amphidinium testudo).pdf (1.2 MB)
Le Gall F, Rigaut-Jalabert F, Marie D, Garczareck L, Viprey M, Godet A, Vaulot D.  2008.  Picoplankton diversity in the south-east pacific ocean from cultures. Biogeosciences. 5:203–214.
Laviale M, Neveux J.  2011.  Relationships between pigment ratios and growth irradiance in 11 marine phytoplankton species. Marine Ecology Progress Series. 425:63–77.PDF icon Laviale_Neveux_2011_Relationships between pigment ratios and growth irradiance in 11 marine.pdf (730.2 KB)
Latasa M, Scharek R, Le Gall F, Guillou L, Le Gall F.  2004.  Pigment suites and taxonomic groups in Prasinophyceae. Journal of Phycology. 40:1149–1155.PDF icon Latasa et al_2004_Pigment suites and taxonomic groups in Prasinophyceae.pdf (32 KB)
Langer G, Sadekov A, Greaves M, Nehrke G, Probert I, Misra S, Thoms S.  2020.  Li partitioning into coccoliths of Emiliania huxleyi : evaluating the general role of “vital effects” in explaining element partitioning in biogenic carbonates. Geochemistry, Geophysics, Geosystems. :0–2.PDF icon Langer et al_2020_Li partitioning into coccoliths of Emiliania huxleyi.pdf (1.18 MB)
Langer G, Nehrke G, Probert I, Ly J, Ziveri P.  2009.  Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences. 6:2637–2646.
Langer G, Taylor AR, Walker CE, Meyer EM, Ben Joseph O, Gal A, Harper GM, Probert I, Brownlee C, Wheeler GL.  2021.  Role of silicon in the development of complex crystal shapes in coccolithophores. New Phytologist. 231:1845–1857.PDF icon Langer et al. - 2021 - Role of silicon in the development of complex crys.pdf (2.03 MB)
Langer G, Bode M.  2011.  CO2 mediation of adverse effects of seawater acidification in Calcidiscus leptoporus. Geochemistry Geophysics Geosystems. 12:1–8.PDF icon Langer_Bode_2011_CO2 mediation of adverse effects of seawater acidification in Calcidiscus.pdf (839.94 KB)

Pages