Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae

TitleSubcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae
Publication TypeJournal Article
Year of Publication2021
AuthorsDecelle J, Veronesi G, LeKieffre C, Gallet B, Chevalier F, Stryhanyuk H, Marro S, Ravanel S, Tucoulou R, Schieber N, Finazzi G, Schwab Y, Musat N
JournalbioRxiv
Pagination2021.03.13.435225
Abstract

Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium) collected in surface seawaters. We showed that this symbiosis is a very dynamic system whereby symbionts interact with different host cells via extracellular vesicles within the “greenhouse-like” colony. 3D electron microscopy revealed that the volume of the photosynthetic apparatus (plastid and pyrenoid) of the microalgae increased in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were assimilated and stored in the symbiotic microalga in starch granules and purine crystals, respectively. Nitrogen was also allocated to the algal nucleus (nucleolus). After 3 hours, low 13C and 15N transfer was detected in the host Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (ca 40 ppm) and two-fold higher in the host, whereas copper concentration increased in symbiotic microalgae (up to 6900 ppm) and was detected in the host cell and extracellular vesicles. Sulfur mapping also pinpointed the importance of this nutrient for the algal metabolism. This study, which revealed subcellular changes of the morphology and nutrient homeostasis in symbiotic microalgae, improves our understanding on the metabolism of this widespread and abundant oceanic symbiosis and paves the way for more studies to investigate the metabolites exchanged.

URLhttps://www.biorxiv.org/content/10.1101/2021.03.13.435225v1
DOI10.1101/2021.03.13.435225