RCC references

Export 37 results:
[ Author(Asc)] Title Year
Filters: First Letter Of Last Name is C  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Cuvelier ML, Guo J, Ortiz AC, van Baren MJ, Tariq MAkram, Partensky F, Worden AZ.  2017.  Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLOS ONE. 12:e0172135.PDF icon Cuvelier et al_2017_Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet.pdf (3.4 MB)
Cruz JDiogo, Delattre C, Felpeto ABarreiro, Pereira H, Pierre G, Morais J, Petit E, Silva J, Azevedo J, Elboutachfaiti R et al..  2023.  Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Scientific Reports. 13:13561.PDF icon Cruz et al_2023_Bioprospecting for industrially relevant exopolysaccharide-producing.pdf (2.12 MB)
Croteau D., Lacour T., Schiffrine N., Morin P.-I., Forget M.-H., Bruyant F., Ferland J., Lafond A., Campbell D.A, Tremblay J.-E. et al..  2022.  Shifts in growth light optima among diatom species support their succession during the spring bloom in the Arctic. Journal of Ecology. n/aPDF icon Croteau et al. - Shifts in growth light optima among diatom species.pdf (1.52 MB)
Croteau D, Guérin S, Bruyant F, Ferland J, Campbell DA, Babin M, Lavaud J.  2021.  Contrasting nonphotochemical quenching patterns under high light and darkness aligns with light niche occupancy in Arctic diatoms. Limnology and Oceanography. 66:S231–S245.PDF icon Croteau et al. - 2021 - Contrasting nonphotochemical quenching patterns un.pdf (1.19 MB)
Crenn K, Duffieux D, Jeanthon C.  2018.  Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are distinct in short- and long-term associations. Frontiers in Microbiology. 9:1–12.PDF icon Crenn et al_2018_Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are.pdf (670.57 KB)
Coutinho F, Tschoeke DAntonio, Thompson F, Thomson C.  2015.  Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ. :e–1522.PDF icon Coutinho et al_2015_Comparative genomics of Synechococcus and proposal of the new genus.pdf (7.66 MB)
Courties C, Perasso R, Chrétiennot-Dinet M.-J., Gouy M, Guillou L, Troussellier M.  1998.  Phylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae). Journal of Phycology. 34:844–849.
Countway PD, Caron DA.  2006.  Abundance and distribution of Ostreococcus sp in the San Pedro Channel, California, as revealed by quantitative PCR. Applied and Environmental Microbiology. 72:2496–2506.
Connell PE, Ribalet F, Armbrust EV, White A, Caron DA.  2020.  Diel oscillations in the feeding activity of heterotrophic and mixotrophic nanoplankton in the North Pacific Subtropical Gyre. Aquatic Microbial Ecology. 85:167–181.PDF icon Connell et al_2020_Diel oscillations in the feeding activity of heterotrophic and mixotrophic.pdf (1.35 MB)
Concórdio-Reis P, Cardeira M, Macedo ACatarina, Ferreira SS, Serra ATeresa, Coimbra MA, Amorim A, Reis MAM, Freitas F.  2023.  Novel exopolysaccharide produced by the marine dinoflagellate Heterocapsa AC210: Production, characterization, and biological properties. Algal Research. 70:103014.PDF icon Concordio-Reis et al_2023_Novel exopolysaccharide produced by the marine dinoflagellate Heterocapsa AC210.pdf (992.03 KB)
Collen J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K et al..  2013.  Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences. 110:5247–5252.PDF icon Collen et al_2013_Genome structure and metabolic features in the red seaweed Chondrus crispus.pdf (1012.43 KB)
Coleman B, Van Poucke C, Dewitte B, Casciaro V, Moerdijk-Poortvliet T, Muylaert K, Robbens J.  2023.  Fine-tuning the flavor of Tetraselmis chuii by modifying nitrogen supply. Algal Research. :103208.PDF icon Coleman et al_2023_Fine-tuning the flavor of Tetraselmis chuii by modifying nitrogen supply.pdf (1.59 MB)
Coello-Camba A, Díaz-Rúa R, Agusti S.  2023.  Design and use of a new primer pair for the characterization of the cyanobacteria Synechococcus and Prochlorococcus communities targeting petB gene through metabarcoding approaches.. MethodsX. :102444.PDF icon Coello-Camba et al_2023_Design and use of a new primer pair for the characterization of the.pdf (1003.58 KB)
Coelho SM, Peters AF, Müller D, J Cock M.  2020.  Ectocarpus: an evo-devo model for the brown algae. EvoDevo. 11:19.PDF icon Coelho et al_2020_Ectocarpus.pdf (1.53 MB)
Clerissi C, Desdevises Y, Grimsley N.  2012.  Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. Journal of Virology. 86:4611–4619.PDF icon Clerissi et al_2012_Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species.pdf (894.33 KB)
Clerissi C, Grimsley N, Ogata H, Hingamp P, Poulain J, Desdevises Y.  2014.  Unveiling of the diversity of prasinoviruses (phycodnaviridae) in marine samples by using high-throughput sequencing analyses of PCR-Amplified DNA polymerase and major capsid protein genes. Applied and Environmental Microbiology. 80:3150–3160.PDF icon Clerissi et al_2014_Unveiling of the diversity of prasinoviruses (phycodnaviridae) in marine.pdf (1.24 MB)
Clark AJ, Torres-Romero I, Jaggi M, Bernasconi SM, Stoll HM.  2023.  Coccolithophorids precipitate carbonate in clumped isotope equilibrium with seawater. PDF icon Clark et al. - 2023 - Coccolithophorids precipitate carbonate in clumped.pdf (1.42 MB)
Claquin P, Probert I, Lefebvre S, Veron B.  2008.  Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquatic Microbial Ecology. 51:1–11.PDF icon Claquin et al_2008_Effects of temperature on photosynthetic parameters and TEP production in eight.pdf (548.15 KB)
Churakova Y, Aguilera A, Charalampous E, Conley DJ, Lundin D, Pinhassi J, Farnelid H.  2023.  Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle. Environmental Microbiology Reports. n/aPDF icon Churakova et al_2023_Biogenic silica accumulation in picoeukaryotes.pdf (454.16 KB)
Chrétiennot-Dinet M.-J., Courties C, Vaquer A, Neveux J, Claustre H, Lautier J, Machado MC.  1995.  A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia. 34:285–292.
Cho A, Tikhonenkov DV, Lax G, Prokina KI, Keeling PJ.  2023.  Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean. Molecular Phylogenetics and Evolution. :107964.PDF icon Cho et al. - 2023 - Phylogenomic position of genetically diverse phago.pdf (2.71 MB)
Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER.  1992.  \textit{Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Archives of Microbiology. 157:297–300.
Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM, Delaux P-M, Li F-W, Melkonian B, Mavrodiev EV, Sun W et al..  2018.  10KP: A phylodiverse genome sequencing plan. GigaScience. 7:1–9.PDF icon Cheng et al_2018_10KP.pdf (6.53 MB)
Chen H, Lin H, Jiang P, Li F, Qin S.  2013.  Genetic transformation of marine cyanobacterium Synechococcus sp. CC9311 (Cyanophyceae) by electroporation. Chinese Journal of Oceanology and Limnology. 31:416–420.PDF icon Chen et al_2013_Genetic transformation of marine cyanobacterium Synechococcus sp.pdf (360.8 KB)
Chamnansinp A, Li Y, Lundholm N, Moestrup Ø.  2013.  Global diversity of two widespread, colony-forming diatoms of the marine plankton, Chaetoceros socialis (syn. C. radians ) and Chaetoceros gelidus sp. nov.. Journal of Phycology. 49:1128–1141.PDF icon Chamnansinp et al_2013_Global diversity of two widespread, colony-forming diatoms of the marine.pdf (3.02 MB)

Pages