%0 Journal Article %J Frontiers in Microbiology %D 2022 %T Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas %A Ferrieux, Mathilde %A Dufour, Louison %A Doré, Hugo %A Ratin, Morgane %A Guéneuguès, Audrey %A Chasselin, Léo %A Marie, Dominique %A Rigaut-jalabert, Fabienne %A Le Gall, Florence %A Sciandra, Théo %A Monier, Garance %A Hoebeke, Mark %A Corre, Erwan %A Xia, Xiaomin %A Liu, Hongbin %A Scanlan, David J. %A Partensky, Frédéric %A Garczarek, Laurence %K RCC2374 %K RCC2385 %K RCC2533 %K RCC2534 %K RCC2571 %K RCC515 %K rcc539 %K rcc791 %X Marine Synechococcus cyanobacteria are ubiquitous in the ocean, a feature likely related to their extensive genetic diversity. Amongst the major lineages, clades I and IV preferentially thrive in temperate and cold, nutrient-rich waters, whilst clades II and III prefer warm, nitrogen or phosphorus-depleted waters. The existence of such cold (I/IV) and warm (II/III) thermotypes is corroborated by physiological characterization of representative strains. A fifth clade, CRD1, was recently shown to dominate the Synechococcus community in iron-depleted areas of the world ocean and to encompass three distinct ecologically significant taxonomic units (ESTUs CRD1A-C) occupying different thermal niches, suggesting that distinct thermotypes could also occur within this clade. Here, using comparative thermophysiology of strains representative of these three CRD1 ESTUs we show that the CRD1A strain MITS9220 is a warm thermotype, the CRD1B strain BIOS-U3-1 a cold temperate thermotype, and the CRD1C strain BIOS-E4-1 a warm temperate stenotherm. Curiously, the CRD1B thermotype lacks traits and/or genomic features typical of cold thermotypes. In contrast, we found specific physiological traits of the CRD1 strains compared to their clade I, II, III, and IV counterparts, including a lower growth rate and photosystem II maximal quantum yield at most temperatures and a higher turnover rate of the D1 protein. Together, our data suggests that the CRD1 clade prioritizes adaptation to low-iron conditions over temperature adaptation, even though the occurrence of several CRD1 thermotypes likely explains why the CRD1 clade as a whole occupies most iron-limited waters. %B Frontiers in Microbiology %V 13 %G eng %U https://www.frontiersin.org/article/10.3389/fmicb.2022.893413 %R 10.3389/fmicb.2022.893413 %0 Journal Article %J mSystems %D 2022 %T Global Phylogeography of Marine Synechococcus in Coastal Areas Reveals Strong Community Shifts %A Doré, Hugo %A Leconte, Jade %A Guyet, Ulysse %A Breton, Solène %A Farrant, Gregory K. %A Demory, David %A Ratin, Morgane %A Hoebeke, Mark %A Corre, Erwan %A Pitt, Frances D. %A Ostrowski, Martin %A Scanlan, David J. %A Partensky, Frédéric %A Six, Christophe %A Garczarek, Laurence %K RCC1086 %K RCC1695 %K RCC2369 %K rcc2380 %K RCC2553 %K RCC2556 %K RCC2570 %K rcc791 %X Marine Synechococcus comprise a numerically and ecologically prominent phytoplankton group, playing a major role in both carbon cycling and trophic networks in all oceanic regions except in the polar oceans. Despite their high abundance in coastal areas, our knowledge of Synechococcus communities in these environments is based on only a few local studies. Here, we use the global metagenome data set of the Ocean Sampling Day (June 21st, 2014) to get a snapshot of the taxonomic composition of coastal Synechococcus communities worldwide, by recruitment on a reference database of 141 picocyanobacterial genomes, representative of the whole Prochlorococcus, Synechococcus, and Cyanobium diversity. This allowed us to unravel drastic community shifts over small to medium scale gradients of environmental factors, in particular along European coasts. The combined analysis of the phylogeography of natural populations and the thermophysiological characterization of eight strains, representative of the four major Synechococcus lineages (clades I to IV), also brought novel insights about the differential niche partitioning of clades I and IV, which most often co-dominate the Synechococcus community in cold and temperate coastal areas. Altogether, this study reveals several important characteristics and specificities of the coastal communities of Synechococcus worldwide. IMPORTANCE Synechococcus is the second most abundant phytoplanktonic organism on Earth, and its wide genetic diversity allowed it to colonize all the oceans except for polar waters, with different clades colonizing distinct oceanic niches. In recent years, the use of global metagenomics data sets has greatly improved our knowledge of “who is where” by describing the distribution of Synechococcus clades or ecotypes in the open ocean. However, little is known about the global distribution of Synechococcus ecotypes in coastal areas, where Synechococcus is often the dominant phytoplanktonic organism. Here, we leverage the global Ocean Sampling Day metagenomics data set to describe Synechococcus community composition in coastal areas worldwide, revealing striking community shifts, in particular along the coasts of Europe. As temperature appears as an important driver of the community composition, we also characterize the thermal preferenda of 8 Synechococcus strains, bringing new insights into the adaptation to temperature of the dominant Synechococcus clades. %B mSystems %P e00656–22 %G eng %U https://journals.asm.org/doi/full/10.1128/msystems.00656-22 %R 10.1128/msystems.00656-22 %0 Journal Article %J Frontiers in Microbiology %D 2020 %T Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria %A Doré, Hugo %A Farrant, Gregory K. %A Guyet, Ulysse %A Haguait, Julie %A Humily, Florian %A Ratin, Morgane %A Pitt, Frances D. %A Ostrowski, Martin %A Six, Christophe %A Brillet-Guéguen, Loraine %A Hoebeke, Mark %A Bisch, Antoine %A Le Corguillé, Gildas %A Corre, Erwan %A Labadie, Karine %A Aury, Jean-Marc %A Wincker, Patrick %A Choi, Dong Han %A Noh, Jae Hoon %A Eveillard, Damien %A Scanlan, David J. %A Partensky, Frédéric %A Garczarek, Laurence %K amino-acid substitutions %K comparative genomics %K evolution %K genomic islands %K marine cyanobacteria %K niche adaptation %K Prochlorococcus %K rcc1084 %K RCC1085 %K RCC1086 %K RCC1087 %K RCC156 %K RCC158 %K rcc162 %K RCC2033 %K RCC2035 %K RCC2319 %K RCC2366 %K RCC2368 %K RCC2369 %K RCC2374 %K RCC2376 %K RCC2378 %K RCC2379 %K rcc2380 %K RCC2381 %K rcc2382 %K RCC2383 %K RCC2385 %K RCC2433 %K RCC2436 %K RCC2438 %K RCC2527 %K RCC2528 %K RCC2533 %K RCC2534 %K RCC2535 %K RCC2553 %K RCC2554 %K RCC2555 %K RCC2556 %K RCC2571 %K RCC2673 %K RCC278 %K rcc296 %K RCC307 %K RCC328 %K RCC3377 %K RCC407 %K RCC515 %K rcc539 %K rcc555 %K RCC556 %K rcc752 %K RCC753 %K rcc791 %K Synechococcus %B Frontiers in Microbiology %V 11 %P 1–23 %8 sep %G eng %U https://www.frontiersin.org/article/10.3389/fmicb.2020.567431/full %R 10.3389/fmicb.2020.567431 %0 Journal Article %J Frontiers in Microbiology %D 2020 %T Synergic effects of temperature and irradiance on the physiology of the marine synechococcus strain WH7803 %A Guyet, Ulysse %A Nguyen, Ngoc A. %A Doré, Hugo %A Haguait, Julie %A Pittera, Justine %A Conan, Maël %A Ratin, Morgane %A Corre, Erwan %A Le Corguillé, Gildas %A Brillet-Guéguen, Loraine %A Hoebeke, Mark %A Six, Christophe %A Steglich, Claudia %A Siegel, Anne %A Eveillard, Damien %A Partensky, Frédéric %A Garczarek, Laurence %K light stress %K marine cyanobacteria %K rcc752 %K Synechococcus %K temperature stress %K transcriptomics %K UV radiations %X Understanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous high-light (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b6/f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria. %B Frontiers in Microbiology %V 11 %P 1707 %8 jul %G eng %U www.frontiersin.org %R 10.3389/fmicb.2020.01707 %0 Journal Article %J New Phytologist %D 2019 %T Unveiling membrane thermoregulation strategies in marine picocyanobacteria %A Breton, Solène %A Jouhet, Juliette %A Guyet, Ulysse %A Gros, Valérie %A Pittera, Justine %A Demory, David %A Partensky, Frédéric %A Doré, Hugo %A Ratin, Morgane %A Maréchal, Éric %A Nguyen, Ngoc An %A Garczarek, Laurence %A Six, Christophe %K RCC2374 %K RCC2385 %K RCC515 %K rcc539 %B New Phytologist %P nph.16239 %8 oct %G eng %U https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.16239 %R 10.1111/nph.16239 %0 Journal Article %J Proceedings of the National Academy of Sciences %D 2018 %T Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria %A Grébert, Théophile %A Doré, Hugo %A Partensky, Frédéric %A Farrant, Gregory K. %A Boss, Emmanuel S. %A Picheral, Marc %A Guidi, Lionel %A Pesant, Stéphane %A Scanlan, David J. %A Wincker, Patrick %A Acinas, Silvia G. %A Kehoe, David M. %A Garczarek, Laurence %K 2018 %K RCC1016 %K RCC1017 %K RCC1018 %K RCC1020 %K RCC1023 %K RCC1027 %K RCC1030 %K RCC1031 %K rcc1084 %K RCC1085 %K RCC1086 %K RCC1087 %K RCC1096 %K RCC1097 %K RCC1649 %K RCC1661 %K RCC1688 %K RCC2032 %K RCC2033 %K RCC2035 %K RCC2319 %K RCC2366 %K RCC2368 %K RCC2369 %K RCC2370 %K RCC2372 %K RCC2373 %K RCC2374 %K RCC2375 %K RCC2376 %K RCC2378 %K RCC2379 %K rcc2380 %K RCC2381 %K rcc2382 %K RCC2383 %K RCC2384 %K RCC2385 %K RCC2415 %K RCC2432 %K RCC2433 %K RCC2434 %K RCC2435 %K RCC2436 %K RCC2437 %K RCC2438 %K RCC2457 %K RCC2525 %K RCC2526 %K RCC2527 %K RCC2528 %K RCC2529 %K RCC2530 %K RCC2532 %K RCC2533 %K RCC2534 %K RCC2536 %K RCC2553 %K RCC2554 %K RCC2555 %K RCC2556 %K RCC2567 %K RCC2568 %K RCC2569 %K RCC2570 %K RCC2571 %K RCC2673 %K rcc30 %K RCC3010 %K RCC3012 %K RCC3014 %K RCC307 %K RCC316 %K RCC318 %K RCC325 %K RCC326 %K RCC328 %K RCC37 %K RCC44 %K RCC46 %K RCC47 %K RCC515 %K rcc539 %K RCC542 %K RCC543 %K RCC550 %K RCC552 %K RCC553 %K rcc555 %K RCC556 %K RCC557 %K RCC558 %K RCC559 %K RCC62 %K RCC650 %K RCC66 %K rcc752 %K RCC753 %K RCC790 %K rcc791 %K RCC792 %K RCC793 %K RCC794 %K sbr?hyto?app %X Marine Synechococcus cyanobacteria are major contributors to global oceanic primary production and exhibit a unique diversity of photosynthetic pigments, allowing them to exploit a wide range of light niches. However, the relationship between pigment content and niche partitioning has remained largely undetermined so far due to the lack of a single-genetic marker resolving all pigment types (PT). Here, we developed a novel and robust method based on three distinct marker genes to estimate the relative abundance of all Synechococcus PTs from metagenomes. Analysis of the Tara Oceans dataset allowed us to unveil for the first time the global distribution of Synechococcus PTs and to decipher their realized environmental niches. Green-light specialists (PT 3a) dominated in warm, green equatorial waters, whereas blue-light specialists (PT 3c) were particularly abundant in oligotrophic areas. Type IV chromatic acclimaters (CA4-A/B), which are able to dynamically modify their light absorption properties to maximally absorb green or blue light, were unexpectedly the most abundant PT in our dataset and predominated at depth and high latitudes. We also identified local populations in which CA4 might be inactive due to the lack of specific CA4 genes, notably in warm high nutrient low chlorophyll areas. Major ecotypes within clades I-IV and CRD1 were preferentially associated with a particular PT, while others exhibited a wide range of PTs. Altogether, this study brings unprecedented insights into the ecology of Synechococcus PTs and highlights the complex interactions between vertical phylogeny, pigmentation and environmental parameters that shape Synechococcus populations and evolution. %B Proceedings of the National Academy of Sciences %V in press %P 201717069 %8 feb %G eng %U http://www.pnas.org/lookup/doi/10.1073/pnas.1717069115 %R 10.1073/pnas.1717069115