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Abstract
To broaden our understanding of pelagic ecosystem responses to environmental change, it is essential that

we improve the spatiotemporal resolution of in situ monitoring of phytoplankton communities. A key chal-
lenge for existing methods is in classifying and quantifying cells within the nanophytoplankton size range
(2–20 μm). This is particularly difficult when there are similarities in morphology, making visual differentiation
difficult for both trained taxonomists and machine learning-based approaches. Here we present a rapid fluoro-
electrochemical technique for classifying nanophytoplankton, and using a library of 52 diverse strains of
nanophytoplankton we assess the accuracy of this technique based on two measurements at the individual
level: charge required to reduce per cell chlorophyll a fluorescence by 50% and cell radius. We demonstrate a
high degree of accuracy overall (92%) in categorizing cells belonging to widely recognized key functional
groups; however, this is reduced when we consider the broader diversity of “nano-phytoflagellates’.” Notably,
we observe that some groups, for example, calcifying Isochrysidales, have much greater resilience to electro-
chemically driven oxidative conditions relative to others of a similar size, making them more easily categorized
by the technique. The findings of this study present a promising step forward in advancing our toolkit for moni-
toring phytoplankton communities. We highlight that, for improved categorization accuracy, future iterations
of the method can be enhanced by measuring additional predictor variables with minimal adjustments to the
set-up. In doing so, we foresee this technique being highly applicable, and potentially invaluable, for in situ
classification and enumeration of the nanophytoplankton size fraction.

The essential role that phytoplankton play in sustaining
marine ecosystems and driving key biogeochemical cycles,
notably the biological carbon pump, is unequivocal. As we
progress through the Anthropocene, the oceans are facing
unprecedented rates of environmental change. In order to

improve our global understanding of the impacts that such
change is having on phytoplankton communities, and how
this might impact key ecosystems services, we must advance
our ability to monitor phytoplankton community structure,
both spatially and temporally. It is pertinent that in situ mea-
surements can capture and quantify the abundance of domi-
nant functional groups of phytoplankton that are present
(i.e., groups with different biogeochemical and/or ecological
functions), as this can inform us about the likely implications
of environmental change for marine food webs, biogeochemical
cycles, and the capacity of such communities to contribute to
sequestration of dissolved CO2. Widely recognized functional
groups include (but are not limited to): coccolithophores, dia-
toms, dinoflagellates, and cyanobacteria (Anderson 2005; Nair
et al. 2008; Anderson et al. 2021).

An important consideration when attempting to quantita-
tively assess in situ phytoplankton communities is that, as sin-
gle unicellular organisms, phytoplankton can exhibit a large
variation in size, spanning over four orders of magnitude;
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ranging in length from picophytoplankton < 2 μm (including
most cyanobacteria and picoeukaryotes) to the largest diatoms
> 1000 μm (Snoeijs et al. 2002; Finkel et al. 2010). From an
ecological perspective, size is considered a master trait and is
known to significantly influence growth rates, nutrient
requirements, grazing susceptibility, and sinking rates
(Litchman and Klausmeier 2008); all of which have a bearing
on important biogeochemical cycles. In this respect, it has
been demonstrated that eukaryotic unicells in the
nanophytoplankton size range (2–20 μm) display the greatest
mass-specific metabolic rates, and thus growth rates, relative
to larger microphytoplankton (20–2000 μm) and smaller pic-
ophytoplankton (Marañ�on et al. 2013; L�opez-Sandoval
et al. 2014; Ward et al. 2017), making them highly competi-
tive and fast responding to environmental perturbations.
Indeed, the general success of nanophytoplankton and their
ability to dominate phytoplankton biomass has been widely
demonstrated from field-based measurements in both the
open-ocean (Tarran et al. 2006; Balzano et al. 2012; de Vargas
et al. 2015; Bolaños et al. 2020) and coastal waters (Barnes
et al. 2015; Pinckney et al. 2015; Alves-De-Souza et al. 2017;
Leblanc et al. 2018; Piwosz 2019). Subsequently, as sentinels
of the phytoplankton assemblage, nanophytoplankton are
an insightful target area for monitoring phytoplankton eco-
logical and biogeochemical functioning in response to ocean
change. To date, however, there are numerous constraints
and limitations to the available methods in obtaining in situ
time series measurements of nanophytoplankton diversity
and abundance.

Arguably, the most accurate method for quantifying phyto-
plankton abundance is microscope taxonomy. If specifically
focusing on the nanophytoplankton size fraction, taxono-
mists can quantify abundance to the genus and species level
when there are easily identifiable cell characteristics or mor-
phologies (e.g., the unique extracellular calcite structures of
coccolithophores, or the complex silica frustules of diatoms).
However, this size fraction also contains a large proportion of
cell types (typically between 2 and 10 μm) that are extremely
hard to identify due to their similar morphology and lack of
external inorganic structure (Widdicombe et al. 2010;
Piwosz 2019). As a result, a significant proportion of the
nanophytoplankton fraction is often given the blanket label
of “nano-phytoflagellates” (or similar) in taxonomy surveys.
For example, a long-term time series (> 15 years) of the pelagic
phytoplankton communities at the L4 station in the Western
English Channel has consistently observed that these “nano-
phytoflagellates” make up > 80% of the total cell counts per
unit volume (Widdicombe et al. 2010). The other main limita-
tions of traditional microscopy are that it is time-consuming
in nature, requires highly skilled labor input, and live samples
being fixed and preserved prior to analysis.

Flow cytometry is a higher throughput quantitative
approach that is often used to distinguish nanophytoplankton

and picophytoplankton size fractions, of either live or fixed
samples. Light scattering and autofluorescence detection allow
for clustering of cells with similar optical properties. This gives
a high degree of separation within the picophytoplankton size
fraction, as the cyanobacteria autofluorescence and scattering
signal is distinct from that of picoeukaryotes (Collier 2000).
Where cytometry falls short is at being able to fully characterize
ecologically relevant components of the nanophytoplankton
fraction; only coccolithophores (detectable due to their unique
light scattering) and cryptophytes (due to their phycoerythrin
content) can be discriminated from other nanoeukaryotes
(Tarran et al. 2006; Tarran and Bruun 2015). Thus, in order to
obtain a true representation of the species present in the
nanophytoplankton fraction, previous studies have often com-
plemented microscope taxonomy and cytometry analyses with
genetics-based interpretations (Balzano et al. 2012; Leblanc
et al. 2018; Piwosz 2019; Bolaños et al. 2020; Stern et al. 2023),
which generally only provide a value for relative abundances.

Over the last decade or so, there has been an increased
application of rapid throughput imaging flow cytometry
(Lombard et al. 2019). This technique demonstrates a high
degree of accuracy in classifying phytoplankton cell types
from a combination of image-based machine learning and
autofluorescence measurements (Olson and Sosik 2007; Sosik

and Olson 2007; Álvarez et al. 2014; Dugenne et al. 2014;
Camoying and Yñiguez 2016; Fragoso et al. 2019; Fuchs
et al. 2022; Irisson et al. 2022; Kraft et al. 2022); thereby, in
essence, merging the identification skills of a microscope tax-
onomist, with the speed and tools of a flow cytometer. The
FlowCam (Yokogawa Fluid Imaging Technologies, Inc.) is a
laboratory-based device (Sieracki et al. 1998) that has
been shown to produce highly comparable results when vali-

dated alongside traditional microscopical estimates (Álvarez
et al. 2014) and, depending upon the FlowCam model, can
analyze a broad range of particle sizes from 300 nm to 1 mm.
As with microscope techniques, however, the current models
of FlowCam still struggle to classify nanophytoplankton cells
that have similar sizes and morphologies. Like FlowCam, the
CytoSense (CytoBuoy b.v.) is a non-submersible imaging flow
cytometry device that has also performed well alongside tradi-
tional microscope taxonomy, but validation is poor for classi-
fying cells that are < 5 μm in size (Haraguchi et al. 2017). The
Imaging FlowCytobot, or IFCB (McClane Research Laborato-
ries, Inc), and CytoBuoy (CytoBuoy b.v.) are devices that oper-
ate similarly to those above, but have been developed to
function autonomously at sea (Dubelaar et al. 1999; Olson
and Sosik 2007; Fragoso et al. 2019). These are promising steps
forward for the generation of in situ spatio-temporal data for
monitoring phytoplankton community structure. Indeed, a
recent study has shown strong correlation between IFCB mea-
surements and microscopy data for quantifying blooms of fila-
mentous cyanobacteria in the Baltic Sea (Kraft et al. 2021).
Nonetheless, while the imaging of these devices covers a broad
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size range, with the IFCB imaging between 10 and 150 μm
and the CytoBuoy from 1 to 778 μm, both devices are reported
to have poor resolution at their lower detection limits neces-
sary for categorizing and quantifying nanophytoplankton
(Dugenne et al. 2014; Fragoso et al. 2019; Bolaños et al. 2020;
Chase et al. 2020; Fuchs et al. 2022). Furthermore, despite
advancements in the machine learning techniques used to
improve the classification of data obtained from such devices
(Fuchs et al. 2022; Kraft et al. 2022), this is only as good as the
resolution of the images acquired and the human interpreta-
tion that drives the training (Irisson et al. 2022). This presents
a substantial challenge in the nanophytoplankton size range,
where there are constraints on image resolution at the finer
scale (dependent on the objective lens and camera technology
employed), along with human limitations in validating (not
all nanophytoplankton are easily distinguishable due to simi-
lar size and morphology). We therefore identify that a key
frontier in monitoring the health of pelagic ecosystems is in
developing novel high-throughput techniques that allow for
higher resolution in situ discrimination and quantification in
the nanophytoplankton size range.

Moving forward, recent developments in the field of analyt-
ical chemistry have shown that electrochemically induced oxi-
dative stress destroys phytoplankton chlorophyll a (Chl a)
fluorescence in a manner that is idiosyncratic, allowing for dif-
ferentiation of phytoplankton species from measurements
that are obtained within 10s of seconds (Yang et al. 2019; Yu
et al. 2022). When a sufficiently high potential is applied to
an electrode that is immersed in seawater, a wide range of oxi-
dants can form and diffuse from the electrode surface, for
example; oxidation of water to hydrogen peroxide and
hydroxyl radicals, bromide to hypobromous acid, and chloride
to dichlorine (Yang et al. 2019; Yu et al. 2022). The subse-
quent reaction of these oxidants with phytoplankton is seen
to cause a rapid decay of the cellular Chl a fluorescence signal.
The rate at which this happens is dependent on a number of
factors, including; the distance of the phytoplankton cells from
the electrode, the potential applied (and thus the species and
concentration of oxidants generated), and more importantly for
the work presented here—the type of phytoplankton cell. To
that end, we apply this novel fluoro-electrochemical method to
a much broader suite of ecologically relevant pic-
ophytoplankton and nanophytoplankton (52 cultured strains)
to produce a “susceptibility library” based on two variables; Chl
a fluorescence “switch-off” and measured cell radius. This
library is assessed using a random forest approach to determine
how well the electrochemical method can be used to classify
cells into relevant groups. We specifically focused on strains of
nanophytoplankton that (a) represent key functional groups
and (b) represent some of the traditionally hard to identify
“nano-phytoflagellates.” We then explore a possible biological
underpinning to the method, as well as discussing its current
limitations and suggested improvements.

Methods and procedures
Culturing for the “susceptibility library”

Phytoplankton monocultures were selected so that we had
a good representation of each of the key functional groups
(5 groups, represented by 37 strains in total), along with an
assortment of strains that we consider to be likely “nano-phy-
toflagellate” candidates (6 groups, represented by 15 strains in
total, within the 2–10 μm size range). The key functional
groups that we analyze are herein labeled as: “Calcifying
Isochrysidales” (7 strains), “Coccolithophores” (8 strains),
“Diatoms” (10 strains), “Dinoflagellates” (8 strains), and
“Picophytoplankton” (4 strains). In this instance, “Calcifying
Isochrysidales” includes strains of both Emiliania huxleyi (6
strains) and Gephyrocapsa oceanica (1 strain). Although they
might both be considered coccolithophores, given their cos-
mopolitan nature and the fact they are the most globally
abundant calcifiers (particularly E. huxleyi) we considered
them as a separate group for this analysis. We also chose to
include a range of E. huxleyi cell stages (both calcified and
non-calcified diploid strains, along with a haploid strain) and
morphologies (representing different extents of calcification),
allowing us to robustly investigate the within species variance
in the electrochemical susceptibility. Picophytoplankton are
included to allow us to test the lower size limits for detection
and classification of our method, including two strains of cya-
nobacteria (both Synechococcus sp.) and two pico-eukaryotes
(Micromonas pusilla and Ostreococcus tauri). Broadening the
dataset to encompass nanophytoplankton beyond the key
functional groups, the additional groups in our analysis were as
follows: “Eustigmatales” (1 strain), “Green algae” (3 strains),
“Non-calcifying Isochrysidales” (4 strains), “Pavlovales” (3
strains), “Phaeocystales” (1 strain), and Prymnesiales (3 strains).
These strains were selected as it has previously been noted that
the unrecognizable “nano-phytoflagelletes,” which are a chal-
lenge for microscope taxonomy, could broadly be assigned to
the phyla of haptophytes (non-calcified types), chlorophytes
(or green algae), and cryptophytes (Piwosz 2019). A full list of
the 52 strains used in this study can be found in Supporting
Information Table S1. In the case of “Eustigmatales” we assume
that a single strain of Nannochloropsis granulata is broadly repre-
sentative, and for “Phyaeocystales” we worked with a single
strain of Phaeocystis globosa.

All strains were obtained from reputable culture collections:
Roscoff Culture Collection (Roscoff, France), Culture Collec-
tion of Algae and Protozoa (Oban, UK) and The Marine Biolog-
ical Association (Plymouth, UK). Following their arrival, they
were maintained in exponential growth through regular sub-
culturing under sterile conditions on their advised growth
medium (see Supporting Information Table S1). All growth
media were prepared using synthetic ocean water (Morel
et al. 1979), allowing greater control over the main composi-
tion of the seawater (see Supporting Information Table S2),
and thus consistency in the probable oxidants formed when
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measuring the electrochemical responses (note that a negli-
gible effect of growth medium on the susceptibility to the
electrochemical stress was observed when compared along-
side natural seawater; see Supporting Information Fig. S3).
Cultures were incubated in PHCbi MLR-352-PE Incubators
(PHC Europe B.V.) set to 17�C (or 20�C for all diatoms),
with a 14 : 10 h light–dark regime at a photosynthetically
active radiation (PAR) intensity of 20–40 μmol m�2 s�1, and
were kept under these conditions for a minimum of
2 months prior to carrying out the electrochemical suscepti-
bility measurements. The growth of the cultures was tracked
on a daily basis using a TECAN Spark plate reader (Tecan
Group Ltd.), where three technical replicates of 200 μL of
each culture were measured for Chl a fluorescence as a
proxy for culture biomass. We then selected a time-point in
mid-exponential growth phase, when each strain was not at
saturation point (i.e., carrying capacity) and therefore not
nutrient limited, to conduct our experiments (see
Supporting Information Fig. S1); however, for a couple of
strains, susceptibility measurements were taken at different
growth phases (and thus different nutrient availability) and
only a minimal difference was observed across the phases
(see Supporting Information Fig. S4). Immediately prior to
the electrochemical experiments, to obtain a sufficient
number of cells per image series (as described below), all
strains were concentrated by centrifugation (Centrifuge
5702, Eppendorf UK Limited) at 1000 r.p.m for 10 min, and
resuspended to a concentration typically ranging between
5� and 10�.

The fluoro-electrochemical technique
A more detailed description of the fundamental electro-

chemical principles and details of the underlying methodol-
ogy, including specifics of the equipment used, can be found
in the previously published work by Yu et al. (2022). For the
purposes of this study, the step-by-step method described
below outlines the essential procedures that were followed to
yield the underlying dataset for the susceptibility library. In
summary, we used a galvanostat-based ramping linear current,
applied to phytoplankton cells settled onto the surface of a
carbon electrode (thus controlling for distance from the elec-
trode) and monitored Chl a fluorescence decay over time per
individual cell (see Supporting Information Table S3 for num-
ber of individual cell measurements per strain). The constant
rate of current ramping (10 μA s�1) means that the moles of
oxidant being generated electrochemically increases with time
in a controlled fashion. This approach allows for greater possi-
ble discrimination of phytoplankton cell types and over a
shorter experimental time frame (e.g., 10s of seconds), as
opposed to running experiments at a single set potential. Con-
sequently, as cell types have different levels of resilience to
such oxidative stress, this technique enables us to quantify
the differences in time that is required to drive the Chl
a quenching across the phytoplankton investigated.

The fluoro-electrochemical measurements were made as fol-
lows (see Fig. 1a, adapted from Yu et al. 2022):

1. A concentrated sample from a phytoplankton monoculture
in exponential growth phase (as described in the Culturing

Fig. 1. (a) a simple schematic diagram of the electrochemistry—fluorescence microscope set up adapted from Yu et al. (2022); (b) an example of nor-
malized Chl a fluorescence transient data for the species Phaeocystis globosa, following onset of the potential (at time 0 s) and with a current ramping of
10 μA s�1. Each black line represents a single cell measurement (n = 110), and the dashed red markings highlight the time point, t50, where normalized
fluorescence values have been reduced by 50%. The time series of images below the plot illustrate the loss of fluorescence with time for one individual
cell. (c) Examples of brightfield images taken before the electrochemical experiments for a selection of strains (left column), and the respective estimate
of projected pixel area that was subsequently used to determine the effective radius of each cell (after assuming a circular shape).
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for the “susceptibility library” section) was “drop cast” onto
the surface of the working electrode. After � 1 min of all-
owing the cells to be deposited on the surface, excess solu-
tion was gently drawn-off using a tissue. Immediately
following this, the 3D-printed cell chamber was filled up to
maximum capacity with culture growth medium via the
sample inlet. Once the chamber was at capacity a glass
cover slip was put in place.

2. Using the fluorescence microscope (Axio Examiner, Carl
Zeiss Ltd), we focused on a field of view whereby we had a
high proportion of phytoplankton cells on the electrode
surface (mean number per experiment = 23 � 18 SD, across
212 unique experimental image series).

3. With the microscope set in bright-field mode, we took an
image of the starting positioning of the cells. These images
were later used to obtain an estimate of effective cell radius
(see Fig. 1c).

4. Next, switching the microscope to fluorescence mode, the
cells were excited using a 475 � 35 nm excitation filter and
emission signal passed through a dichroic mirror specific to
wavelengths > 590 nm for Chl a fluorescence detection.
Simultaneously, the galvanostatic control was synchro-
nized with the camera and data acquisition was started. For
the first 40 s of the electrochemical experiment, no poten-
tial was applied, allowing the fluorescence signal to stabi-
lize. Following this, the current was ramped from 0 μA at a
rate of 10 μA s�1 and images recorded at a capture rate of
10 fps. For each set of experiments the current was ramped
until the chlorophyll signal had completely “switched off.”

5. After the experiment, the 3D chamber was rinsed clean
with deionized (DI) water and the above steps were
repeated a minimum number of three times for each phyto-
plankton strain.

Following the experimental data collection, the raw fluores-
cence transient data were processed for each individual cell
within each experimental time-series (n = 4884, across all
strains) using ImageJ software (v1.53c, Fiji distribution), where
“n” is the number of individual phytoplankton cell measure-
ments. The integrated fluorescence intensity values for each
individual cell (It) were corrected by subtracting the back-
ground signal of the electrode surface (IBG) for all time points:
It � IBG, following this all values were then normalized by
dividing by the fluorescence intensity at the onset of the
potential (I0): (It � IBG)/(I0 � IBG). We then used the normal-
ized transient data to determine the time point for each indi-
vidual cell where normalized intensity had decreased by 50%
(t50), see Fig. 1b. Due to the consistent linear ramping of cur-
rent at 10 μA s�1 and that all phytoplankton cells imaged were
settled on the surface of the electrode within the timescale of
the experiments, we were able to determine the total charge
required to be injected to reach t50 for each cell, and thus we
herein refer to our Chl a susceptibility factor as charge at t50
(in mC). In some instances where there was significant

movement of individual cells it was not possible to accurately
measure the Chl a fluorescence profile throughout the time
series, and subsequently data for these cells was considered
erroneous and removed from the analysis.

For each cell specific Chl a fluorescence transient, we used
the corresponding bright-field image collected prior to electro-
chemical experiments to derive a corresponding cellular area
based on white pixel area of the cell (Fig. 1c). This was
achieved by using the auto-threshold function in ImageJ free-
ware. From the total pixel area and using a predefined μm to
pixel ratio (0.31 μm per pixel), we were able to estimate an
effective radius (in μm) of each cell by assuming a circular 2D
cell geometry (or a spherical cell). For cells in the pic-
ophytoplankton size range, due to the lack of contrast with
the electrode surface it was not possible to accurately distin-
guish cell area, and therefore in these instances we obtained a
measurement of mean cell pixel area by manually measuring
the area of a subset of at least 10 cells per experimental time
series (using ImageJ).

Assessment of the susceptibility library
With the two parameters of charge at t50 (mC) and effective

radius (μm) defined for each individual cell, we assessed the
applicability of the susceptibility library for distinguishing
the cells into pre-defined groupings of relevance, as defined in
the Culturing for the “susceptibility library” section. Prior to this
assessment it was necessary to balance the dataset for even strain
representation within each predefined grouping. This was neces-
sary as there was limited control over the number of individual
cell transients obtained per experimental image series per strain
(due to unpredictable numbers of cells depositing on the elec-
trode surface), resulting in under/over-representation within
groups (see Supporting Information Table S3). To balance the
data at the group level, we identified the strain within each
group that had the lowest number of observations, and used that
minimum number to randomly subset a sample of the same
length for each of the other strains within the grouping level.
This was achieved using the sample_n function in the R package
dplyr (R version 4.2.2). The resultant balanced dataframe
(n = 2277) was subsequently used to derive mean values at the
group level and for the analyses described below (see Supporting
Information Tables S4, S5 for balanced data).

First, looking at charge at t50 independently from radius,
across all strains we see a large range spanning three orders of
magnitude (see Supporting Information Table S4), from a
mean of 0.08 mC (� 0.02 SD) for the pico-eukaryote
Ostreococcus tauri, up to 7.34 mC (� 1.88 SD) for the dinofla-
gellate Scripsiella trochoidea. At the level of the predefined
groupings described above we see the lowest mean charge at
t50 within the “Picophytoplankton” of 0.11 mC (� 0.03 SD),
and the greatest mean charge at t50 within the “Eustigmatales”
2.45 mC (� 0.41 SD), preceded by “Dinoflagellates” at
2.32 mC (� 2.22 SD; see Fig. 2b; Supporting Information
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Table S5). The large range in these values indicate that there is
a strong effect of cell grouping on the resilience to electro-
chemically driven oxidative stress. Critically, however, there is
also considerable overlap in the values, as an example: “Calci-
fying Isochrysidales” have a mean charge at t50 of 1.39 mC
(� 0.57 SD), which sits well within the large deviation range
of the “Dinoflagellates.” Subsequently, in order to further dis-
tinguish the groupings in such instances, use of the effective
radius can provide an additional dimension for separation
where there is overlap. In the case of the previous example, we
see that “Calcifying Isochrysidales” have a mean effective radius
of 3.36 μm (� 0.89 SD), whereas “Dinoflagellates” have a signifi-
cantly larger mean effective radius of 10.03 μm (� 3.05 SD; see
Fig. 2a; Supporting Information Table S5). Taking this forward,
we next use a random forest analysis to test the potential for
single cell categorization across all the groups based on the vari-
ance in both charge at t50 and effective radius.

Random forest analysis uses the predefined classes (in this
case the phytoplankton groupings) to construct a range of
“decision trees” for discrimination of the individual observa-
tions (in this case each phytoplankton cell) based upon the
predictor variables (in this case charge at t50 and effective
radius) of a dataset. To effectively test the accuracy of classifi-
cation, this requires input of a “training” dataset so that the
random forest algorithm can create the necessary discrimina-
tion functions for the predefined classes. A “testing” dataset
can then be used to determine the accuracy of the

discrimination on an independent set of ‘blind’ observations.
As an example of its application in a relevant field, random
forest algorithms have previously been used to successfully
distinguishing individual populations of phytoplankton
strains from flow cytometry measurements on artificial com-
munities (Bestion et al. 2020, 2021). While a flow cytometer
records a wide range of fluorescence and light scattering vari-
ables per individual cell, here we are limited to testing the dis-
tinguishing power of our method with only the two
aforementioned predictor variables (though additional variables
for future iterations of the method are discussed later). Specifi-
cally, for our analysis, we used the “randomForest” function in
the R package “randomForest”; this function uses Breiman’s
random forest algorithm for classification (Breiman 2001). From
this we could determine categorization “decision trees” for two
subsets of the susceptibility library data: (a) The key functional
groups only (5 groups) with the balanced dataset (see Fig. 3)
and (b) all groups (11 groups) with the balanced dataset (see
Fig. 5; Supporting Information Table S5). For each subset, we
randomly split the datasets using the sample_n function as
described above, assigning 80% of data for the training compo-
nent, and 20% for the testing. The two input predictor variables
of charge at t50 and effective radius were natural log trans-
formed prior to running the analysis. Following the training
and subsequent testing, confusion matrices were returned to
demonstrate the predictions of the random forest models (see
Figs. 4, 6; Supporting Information Tables S6–S9). At the level of

Fig. 2. (a) Mean effective radius (μm) at the level of each phytoplankton grouping defined in this study. The numbers alongside respective datapoints
are the mean effective radius in μm. (b) Natural logarithm converted mean charge at t50 (mC) for each phytoplankton grouping. Data points represent
the mean for each group, and error bars represent the standard deviation of the mean (see Supporting Information Table S5). Color coding and shapes
represent each group (see legend). Note that the ordering on the x-axis is in ascending order for each plot, demonstrating that across the groups larger
cell radius does not necessarily result in greater charge at t50. Asterisk denotes groups that were just represented by a single species.
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group for each testing subset, we investigated the prediction
success in terms of recall, precision, and F1-score metrics (Kraft
et al. 2022), see Tables 1 and 2.

Recall determines how well the random forest quantifies
true positives (TP) for each class, that is, a higher recall means
fewer false-negative predictions are made (FN):

Recall¼ TP
TPþFN

Precision determines how well incorrect false positives
(FP) are rejected for each class, that is, a higher precision
means fewer false positive predictions are made, and more
true negatives (TN) are correctly identified:

Precision¼ TP
TPþFP

The F1-score combines both the recall and precision into a sin-
gle metric to define the overall prediction accuracy for each class:

F1� score¼2� precision� recallð Þ
precisionþ recall

In addition to the above, overall accuracy of the random
forest was returned to demonstrate the success rate of categori-
zation across the testing dataset:

Accuracy¼ TPþTN
TPþFPþTNþFN

From training the random forest with the balanced dataset
of the key groups only, we found there to be an overall testing
accuracy of 92% (see Table 1; Supporting Information
Table S7). The high level of accuracy is perhaps unsurprising
considering the visual clustering of the datapoints (see Fig. 3).
Within the groupings, however, some classifications perform bet-
ter than others. “Picophytoplankton” are correctly classified in
all instances (recall = 1), and this is primarily driven by their
much smaller size relative to the other groups. “Calcifying
Isochrysidales” are the next best predicted group with a recall of
0.99, and this appears to primarily be driven by their greater
electrochemical resilience (i.e., greater charge at t50) relative to
cells of a similar small size. The poorest performance was in
classifying “Dinoflagellates,” with a recall of 0.71, albeit having
a precision score of 0.81. This is likely due to considerable varia-
tion in the charge at t50 within this group, meaning that some
strains of dinoflagellate are misclassified as larger diatoms and
coccolithophore, contributing to a greater number of false nega-
tives in this instance. On the whole, the fact that all five of the
key groups had F1-scores > 0.75 is an indication that the elec-
trochemical sensitivity provides a good degree of separation, in
combination with size. Nonetheless, in order to be more reflec-
tive of the diversity of nanophytoplankton found in naturally

Fig. 3. A scatterplot of natural log charge at t50 (mC) against natural log effective cell radius (μm) for the “key functional groups” of cells measured in
this study (n = 1406, see Supporting Information Table S5 for a summary of the balanced dataset). Although there is some overlap of the groupings, the
random forest analysis on testing subset of this data returned an overall accuracy of 92% (see Fig. 4; Table 1; Supporting Information Table S7).
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occurring communities, we next considered the level of perfor-
mance once all of the other groups are included in the random
forest analysis (see Figs. 5, 6).

When all the groupings are considered, following training,
the overall accuracy on testing was 71% (see Table 2). The
lower level of accuracy compared to the interpretation with
only the key groups is also unsurprising, given that the num-
ber of potential classes in the random forest has more than
doubled (5–11) and considering the greater extent of overlap
in the group level clustering of the datapoints (see Fig. 5).
Despite the overall reduction in accuracy, all the key groups

maintain a relatively high level of predictability with all five
returning recall, precision and F1-scores of more than 0.6. Of
the key groups, the biggest reduction in performance is in
the “Diatom” group, with recall being reduced from 0.9 in
the key groups subset (see Table 1) to 0.63 when all groups
are included. An element of confusion in this instance is
being caused by cell types belonging to the other groups,
such as “Non-calcifying Isochrysidales” and “Prymnesiales,”
which have similar size and electrochemical susceptibility
distributions. Of the additional groups, the best performing
were the “Pavlovales” with an F1-score of 0.68, closely
followed by “Prymnesiales” and “Eustigmatales,” both with
F1-scores of 0.67. The worst performing were “Green algae”
and “Non-calcifying Isochrysidales” with F1-scores of 0.33
and 0.39, respectively. In both cases, considerable confusion
was coming from “Diatoms” and “Calcifying Isochrysidales,”
and specifically for “Green algae” there was substantial confu-
sion with “Non-calcifying Isochrysidales.” As dinoflagellates
are often the group most commonly associated with harmful
algal blooms, it is interesting to note that we see a higher pre-
cision (0.82) than recall (0.75) for this group. This indicates
that while the random forest model is better at rejecting false
positives, it could be improved in terms of reducing false

Fig. 4. A normalized confusion matrix demonstrating the prediction success of testing the random forest model with just the key groups included. To
normalize, predicted number of cases were divided by the true total number of cases in each group (see Supporting Information Table S7 for original
values).

Table 1. Evaluation metrics obtained from testing the random
forest model trained for the key groups only.

Group Recall Precision F1-score

Calcifying Isochrysidales 0.99 0.95 0.97

Coccolithophores 0.88 0.91 0.89

Diatoms 0.9 0.89 0.9

Dinoflagellates 0.71 0.81 0.76

Picophytoplankton 1 1 1
Overall accuracy 0.92

8

Barton et al. A novel phytoplankton classification method

 15415856, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lom

3.10572 by C
ochrane France, W

iley O
nline L

ibrary on [19/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Fig. 5. A scatterplot of natural log charge at t50 (mC) against natural log effective cell radius (μm) for all groups of cells measured in this study
(n = 2277, see Supporting Information Table S5 for a summary of the data presented here). Compared to Fig. 3, where just the key functional groups are
presented, we now see more overlap of the groupings. The random forest analysis on the testing subset of this data returned an overall accuracy of 71%
(see Fig. 6; Table 2; Supporting Information Table S9). Asterisk denotes groups that were just represented by a single species.

Fig. 6. A normalized confusion matrix demonstrating the prediction success of testing the random forest model with all groups included. To normalize,
predicted number of cases were divided by the true total number of cases in each group (see Supporting Information Table S9 for original values). Asterisk
denotes groups that were just represented by a single species.
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negatives (i.e., true cases of dinoflagellate that are being mis-
sed). From an applicability point of view, this could suggest
that as things stand, improvement is needed if such a tech-
nique was to be employed to monitor for potentially harmful
algae.

Significantly, of the key groups, there were some notable
high performers following testing, despite the inclusion of
the other groupings: “Calcifying Isochrysidales” with a recall
of 0.87, “Coccolithophores” a recall of 0.86, and for
“Picophytoplankton” recall remained at 1. In the case of the
“Coccolithophores,” their relatively strong predictability is
likely due to their low electrochemical resilience relative to
their large size, in contrast to “Dinoflagellates” of a compara-
ble size which generally have a greater resilience. “Calcifying
Isochrysidales” on the other hand are highly distinguishable
for their remarkable electrochemical resilience relative to
other groups of a similar smaller size. This poses some key
questions about the underlying mechanism of this tech-
nique for distinguishing cell types across the groups: How
much is cell size driving the electrochemical resilience? Are
there any contradicting exceptions to any potential size scal-
ing? With this in mind, we next scrutinize the effect of size
on the susceptibility factor to see how much this is driving
the overall resilience to the oxidative stress across the
groups.

Understanding the mechanism: The size scaling of the
relationship and size adjusted resilience

Using the balanced dataset of all groupings, we investigated
if there was a significant linear relationship between natural
log transformed charge at t50 and effective radius (see Fig. 7).
This was achieved using the lme4 package in R for linear
mixed effects modeling, whereby we fitted and compared lin-
ear models to the data both with and without the random
effect of grouping on both the intercept and slope of the

response. Of the two models, the model including the random
effect of grouping on both the slope and intercept scored
more favorably than the model without (see Supporting Infor-
mation Table S10), indicating that there was an overall signifi-
cant positive linear scaling between charge at t50 and effective
radius (p < 0.001), but that this scaling was highly variable
across the groupings. The overall model returned a slope value
of 0.72 (95% CIs: 0.30–1.13). Out of the 11 “groups,” 7 of
them had significant positive within group size dependence,
notably “Green algae,” “Diatoms,” and “Dinoflagellates” had
particularly strong scaling of more than 1 (see Supporting
Information Fig. S7; Table S11). There was no significant size
scaling within the groups of “Picophytoplankton,” and
“Eustigmatales,” “Phaeocystales”; this is perhaps unsurprising
given that the latter two were only represented by one single
strain. Notably, the only group that had a significant negative
size scaling were the “Calcifying Isochrysidales,” �0.48
(95% CIs: �0.66 to �0.31).

On the whole, this demonstrates that across most of the
groupings there is an intrinsic allometric scaling of charge
required to “switch-off” the Chl a signal. This was previously
found at the species level in a recent study by Yu et al.

Table 2. Evaluation metrics obtained from testing the random
forest model trained for all groups.

Group Recall Precision F1-score

Calcifying Isochrysidales 0.87 0.8 0.83

Coccolithophores 0.86 0.87 0.86

Diatoms 0.63 0.65 0.64

Dinoflagellates 0.75 0.82 0.78

Eustigmatales* 0.55 0.86 0.67

Green algae 0.33 0.33 0.33

Non-calcifying Isochrysidales 0.32 0.5 0.39

Pavlovales 0.65 0.71 0.68

Phaeocystales* 0.64 0.54 0.58

Picophytoplankton 1 1 1

Prymnesiales 0.74 0.61 0.67
Overall accuracy 0.71

*Groups that were just represented by a single species.
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Fig. 7. A scatterplot of natural log charge at t50 (mC) against natural log
effective cell radius (μm) of cells measured in this study, following the
balancing of strain representation per group (n = 2277, see Supporting
Information Table S4 for a summary of the data presented here). The red
line indicates the overall slope (0.72) of the allometric relationship
modeled using linear mixed effects with the random effect of grouping
on the slope and intercept factored for, and the blue dashed lines indicate
the 95% confidence of this model fit (slopes of 0.30 and 1.13 for lower
and upper, respectively), see Supporting Information Tables S10 and S11
for statistics.
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(2023), which demonstrated that differing electrochemical
susceptibility of life stages of Chlamydomonas concordia, were
primarily driven by size variation in the different cell types,
and not necessarily an underlying biological factor
(Yu et al. 2023). Consequently, we could postulate that any
significant differences in electrochemical susceptibility fol-
lowing a size normalization might therefore indicate which
of the groupings in this study have an ‘unknown’ underlying
biological feature that results in higher or lower resilience.
We investigated this by normalizing all charge at t50 values
for size, by simply dividing charge (mC) by effective radius
(μm) for each of the individual measurements in the bal-
anced dataset (see Fig. 8).

Following size normalization of the charge at t50, we car-
ried out pairwise comparisons across the groups using
Pairwise Wilcoxon Rank Sum testing (due to the non-
parametric distribution of data in most of the groups), for
this we used the function pairwise.wilcox.test in the R package
stats, with p.adjust.method set to the “Bonferroni” correction
of p values, see Supporting Information Table S12. We see no
significant difference between a number of the key groupings,
notably “Diatoms” and “Coccolithophores” (p = 0.388), and
“Picophytoplankton” and “Dinoflagellates” (p = 0.325).
Given that “Diatoms” in this dataset have a mean effective
radius of 4.18 μm (� 2.60 SD) and “Coccolithophores” of
8.44 μm (� 2.20 SD), this indicates that most distinguishing
between these two groups within the random forest must pri-
marily be driven by size, given that their size normalized
charge values are indistinguishable. Likewise, “Pic-
ophytoplankton” have a mean effective radius of 1.03 μm
(� 0.15 SD) and “Dinoflagellates” a mean effective radius of
10.03 μm (� 3.05 SD), demonstrating extreme ends of the size
spectrum within this dataset, yet after size normalization of
their respective charge values they are indistinguishable in
terms of their electrochemical resilience. Contrary to these
observations, it is evident that there are some clear outliers,
whereby following size normalization they are more distin-
guishable from the rest of the groups, notably “Calcifying
Isochrysidales” and “Eustigmatales.” In both cases, their size
normalized charge was statistically greater than all the other
groups, with “Eustigmatales” having the greatest overall per
unit size resilience (see Fig. 8; Supporting Information
Table S12). While we only have one strain representing
“Eustigmatales” in this dataset, Nannochloropsis granulata, we
might infer that there is something about the particular biol-
ogy of these two groups that is driving their greater resistance
to the high levels of oxidative stress. This is of relevance to
the method, because across all our assessments using the ran-
dom forest analysis it was the “Calcifying Isochrysidales”
group that consistently retained one of the highest levels of
prediction accuracy of the key functional groups. Taking our
investigation further, we next take a closer look at within spe-
cies variability to disentangle if any of the particular strains
of E. huxleyi (from the “Calcifying Isochrysidales” group),

representing different life stages and calcification morphol-
ogies (Green et al. 1996; Young et al. 2003; Bendif
et al. 2023), can help to identify any further trends that may
lead to understanding the biological mechanism.

Despite their differing coccosphere morphologies (ranging
from light-, moderate-, and over-calcified features), in most
cases across the four calcified (diploid) strains there was negli-
gible difference in the size normalized charge at t50 (see Fig. 9;
Supporting Information Table S13). This result is reassuring in
terms of the proposed sensing technology, as it suggests that
the within strain variance of “Calcifying Isochrysidales” is not
too substantial to cause confusion with other groups. Of par-
ticular curiosity, the “1242” non-calcified diploid strain (RCC
1242) had a significantly greater charge per unit size relative to
all other strains, and furthermore the “1217” non-calcified
haploid strain (RCC 1217) was generally indistinguishable
from the calcified strains (except for its calcified diploid ver-
sion RCC 1216). This observation is of relevance to under-
standing any potential underlying mechanism to the sensor
technology for two reasons. First, it indicates that there is min-
imal effect of the extracellular inorganic calcite layers in either
increasing or reducing the resilience of the cell type. This is
also more broadly demonstrated when comparing the “Calci-
fying Isochrysidales” group to the “Coccolithophores,” the lat-
ter in many instances (e.g., Coccolithus braarudii) having much
larger extracellular calcium carbonate shell volumes (Yang
et al. 2022), yet relatively much faster “switch-off” times and
lower size normalized charge tolerance under this method (see
Fig. 2b; Supporting Information Fig. S9). Second, it suggests
that there is something biologically different between the
non-calcified and calcified diploid cells that is driving the dis-
crepancy in the resilience. Disentangling this is beyond
the scope of this study, but presents an avenue for further
investigation as to why such cell types have greater resilience.
Indeed, along a similar vein of thinking, exploring the biologi-
cal differences of each of the groups against the highly resil-
ient Nannochloropsis granulata could help to understand what
is driving such resilience irrespective of the cell size. As a ten-
tative suggestion, greater resilience could simply be deter-
mined by the membrane structure of the cell, whereby the
presence of more membrane layers surrounding the cytoplasm
and/or the plastids could potentially present a barrier acting to
slow down the transmission of the oxidative radicals to the
chlorophyll molecules (Yu et al. 2022). It has previously been
reported that Isochyrsidales (and specifically E. huxleyi and
G. oceanica) are distinctive from other coccolithophorids due
to a number of different periplast and membrane features,
including: unmineralized outer cell scales, more rigid double
membrane structures of the peripheral endoplasmic reticulum,
and unique long-chain membranous alkenones (Fujiwara
et al. 2001). Perhaps it is features, such as these, slowing the
transmission of radical oxidants to the chloroplasts of “Calci-
fying Isochrysidales,” resulting in apparent resilience relative
to other groups in this study.
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Fig. 8. Comparison of per group means of size normalized charge at t50, following the balancing of strain representation per group. Data points repre-
sent the mean value for each group and the error bars are for standard deviation. The labeled numbers alongside the data points represent the mean
effective radius for each of the groups (in μm), illustrating that in some instances there is a disproportionate resilience to the electrochemical charge rela-
tive to cell size—notably for “Calcifying Isochrysidales” and “Eustigmatales.” For pairwise comparisons, see Supporting Information Table S12. Asterisk
denotes groups that were just represented by a single species.

Fig. 9. (a) Comparison of natural log transformed mean charge at t50 across the different strains of Emiliania huxleyi representing different coccosphere
morphologies (0911 [RCC911], 1731 [RCC1731], 1216 [RCC1216], [PLY853]), and non-calcified diploid and haploid life stages (1242 [RCC1242], (1217
[RCC1217]). For details on the strains, see Supporting Information Table S1. (b) Comparison of natural log transformed size normalized charge across the
same strains. The labeled numbers alongside the data points represent the mean effective radius for each of the strains (in μm), illustrating that across the
strains there is minimal difference in size. For pairwise comparisons, see Supporting Information Table S13. For both plots, data points represent the mean
value for each group and the error bars are for standard deviation.
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Discussion
Overall, our method has demonstrated a good degree of

accuracy when it comes to making classifications of cell types
into ecologically relevant groups. The groups that consistently
had the greatest accuracy were “Calcifying Isochrysidales,”
“Coccolithophores,” and “Picophytoplankton”; all of which
maintained a recall of > 0.85, and precision and F1-scores of
> 0.8, across the random forest predictions (both key group and
all group libraries). The inclusion of the suspected “nano-phyto-
flagellate” groups did cause some overall reduction in the accu-
racy of the technique, from 92% to 71%, but given that we
have just two variables to make predictions (charge at t50 and
effective radius), this is something that we anticipate can be
improved if the technique was adjusted to capture additional
predictor variables. The findings of the susceptibility library
assessment also demonstrate that following size normalization
there must be some underlying biological feature that is
enhancing the strong classification ability of some of the
groups, notably “Calcifying Isochrysidales” and “Eustigmatales,”
and thus this presents an important avenue for further investi-
gative studies into the potential mechanistic underpinnings.

Current applicability of the method and recommendations
Although we demonstrate the ability of our technique to

classify nanophytoplankton into groups of relevance, it is criti-
cal that the method can quantify the abundance of different
groups in natural seawater samples. This will require field testing
alongside more traditional techniques, for example, microscope
taxonomy and cytometry to validate the applicability of using a
predefined susceptibility library based on a limited selection of
52 monocultures. Methodological and engineering advance-
ments will need to be made to take this method to such a stage.
As things stand, in obtaining the susceptibility measurements
presented here, samples of an uncontrolled volume were drop
cast following concentration by centrifugation and left to settle
on the electrode beforehand (Kumar et al. 2020). Therefore,
given the uncertainties around the volume of sample used, it
was not possible to quantify the original abundance of cells in
the samples measured. A prototype instrument that implements
the fluoro-electrochemical technique with a flow-cell type sys-
tem could help to overcome this issue, as both sample volume
and flow rate could be quantifiable and controllable. To achieve
the “current ramping” approach as demonstrated in this study it
is likely that a series of in-flow ring electrodes with different
applied currents, separated at periodic intervals, would be
required in a future flow-type device. This may allow for a simi-
lar level of classification, but with the advantage of the high
throughput of a flow-cell setup where number of events can be
quantified per unit time, providing a measurement of actual
abundance for the different classified cell types. Not only could
this make the laboratory-based measurements higher through-
put (akin to imaging flow cytometry), it would also be an essen-
tial step toward the long-term goal of the technique being used

on autonomous platforms, whereby the collection of in situ spa-
tiotemporal data of nanophytoplankton community structure
would be invaluable to monitoring the effects of environmental
change. From a practical point of view, our technique could
lend itself well to long-term in situ monitoring via an autono-
mous platform. The electrochemical technique is reagent free
(whereby seawater serves as the electrolyte), thus minimizing
the need for regular retrieval of the device. Furthermore, the pro-
duction of oxidants on the electrode surface provides an intrin-
sic anti-fouling mechanism; indeed, electrochemical generation
of hydroxyl radicals is a technique that has been successfully
used to rapidly kill invasive phytoplankton species in ship’s bal-
last water within seconds, not dissimilar to what we see in the
experiments presented here (Zhitao et al. 2005; Bai et al. 2010,
2012; Zhang et al. 2013). Given the relatively simple optics set-
up of our technique, compared to others, it is also likely the key
components be scaled down from the current lab set-up (see
Fig.1a), making it more feasible for deployment in the field.

As mentioned previously, devices such as FlowCam, Cyto-
Sense, CytoBuoy, and IFCB use combinations of flow
cytometry fluorescence measurements with rapid imaging of
cells. While highly progressive in helping us to understand
planktonic communities, they fall short in their ability to dis-
tinguish at the much smaller size ranges—especially when
many cell types in the nanophytoplankton range can have a
similar apparent morphology and size. Understandably, there is
a consequent trade-off between magnification, image quality,
and the size range of phytoplankton being measured. This is
likely to make any machine learning algorithms poorer at the
lower limits of the nanophytoplankton size range. The key nov-
elty of our classifying technique at the nanophytoplankton
level is the extra tool for distinguishing phytoplankton cell
types that has not been previously applied: the electrochemi-
cal susceptibility of the Chl a fluorescence signal, which is
less dependent on magnification and image resolution. We
can get a good degree of categorization overall from simply
combining the charge at t50 value with a simple effective
radius estimate. We also demonstrate that our design has
potential to distinguish picophytoplankton, as well as larger
nanophytoplankton, spanning three orders of magnitude.

It was evident from our assessment that some groups were
more easily predicted than others, especially when all the
groups were considered. Of the key functional groups, our
technique currently falls short when it comes to dis-
tinguishing diatoms (F1-score of 0.64, see Table 2), and of the
other groups, the lowest accuracy was in predicting “Non-
calcifying Isochrysidales” and “Green algae” (F1-scores of 0.39
and 0.33, respectively, see Table 2). Therefore, due to the dif-
fering levels of classification ability across the groups as
things stand, it is likely the set-up would yield more promis-
ing in situ measurements from nanophytoplankton commu-
nities dominated by taxa belonging to the more easily
classifiable groups presented here. To advance our method
further, and with minimal increase in cost, a couple of
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adjustments to both the apparatus and method could give us
additional variables that will likely improve predictive abil-
ity. First, with the addition of more excitation and emission
pathways, a measurement of secondary Chl b pigment fluo-
rescence could be obtained. In marine phytoplankton, this
pigment is unique to chlorophytes (or green algae). In the
nanophytoplankton range, a large degree of confusion for
our method was between the “Diatoms” and “Green algae,”
and therefore this addition would help to reduce this. Such
an advancement could also assist at the picophytoplankton
scale, where the majority of pico-eukaryotes are either
prasinophytes containing Chl b or cyanobacteria containing
phycocyanin (a chlorophyll accessory pigment, also with dis-
tinguishable autofluorescence properties).

Second, where there is overlap between calcified cell groups
and others, we might be able to use the intrinsic dissolution
of the calcite during the electrochemical experiments to
observe changes in the apparent radius before and after the
experiment. In brief, the electrochemical oxidation of water
means that H+ is generated in the vicinity of the electrode,
decreasing the pH around the cells. Consequently, it has been
observed that during the short time span of the experimental
measurements presented here, the smaller extracellular calcite
coccospheres (e.g., E. huxleyi) can be completely dissolved,
such that a before and after measure of cell radius could indi-
cate the calcification of a cell. Previous work has demonstrated
that such a method can also be applied to estimate the mass
of extra-cellular calcium carbonate of entire coccospheres (Fan
et al. 2022; Yang et al. 2022), which is another relevant mea-
surement for understanding marine biogeochemical cycles,
notably the “rain ratio” (Hutchins 2011). Having an additional
predictor variable of the ratio of cellular radius before and after
the fluoro-electrochemical experiment would thereby provide
an entirely affordable and achievable additional dimension for
improved differentiation of calcified and non-calcified cell
types in the random forest algorithms, as well as generating
an estimate of cellular calcite which could be of great value to
ocean biogeochemists.

Lastly, additional predictor variables can be gained by tak-
ing advantage of the full range of data that is harvested from
the experiments presented here. In terms of the Chl
a fluorescence measurement, we only use a single parameter
derived from each transient profile: charge at t50. If the full
transient profiles were to be assessed then it is likely this could
improve the predictive power of the susceptibility library.
Indeed, the shape of the transients appear to be idiosyncratic
at a group-specific level (see Supporting Information Fig. S2).
With this in mind, by extracting the time (and thus charge)
data for additional stages of normalized Chl a fluorescence
intensity (e.g., at 75%, 25%, and 0%) we are more likely to
capture the variation in the shape, or gradient, of the “switch-
off” profile. Likewise, in terms of the bright-field imaging, we
only make a relatively crude interpretation of the cell radius.
There are other variables that can be characterized from the

images, such as the minor and major axis lengths to deter-
mine aspect ratio (and thus giving an indication on how
spherical or elongated a cell is).

Taking things forward, while we demonstrate relatively good
accuracy with just using the two predictor variables used in this
study (charge at t50 and effective radius), a greater wealth of
data could be yielded with only minor methodological tweaks
(as suggested above). By training the random forest with more
variables (such as: secondary pigment fluorescence, change in
cell radius before and after experiment, Chl a fluorescence at
different stages in the “switch-off,” and various cell characteris-
tics from 2D bright-field images) this is likely to improve the
classification accuracy across more of the relevant groups.

Overall, following on from the promising results presented
here, we foresee that our technique (subject to the improve-
ments discussed) could be extremely complimentary to
broader efforts of ocean monitoring. The focus of our tech-
nique on the nanophytoplankton size fraction can add detail
that is currently missing from existing techniques. As we dem-
onstrate, there is potential for distinguishing cells into rele-
vant groupings, going beyond the limited capacity of standard
flow cytometry where, as things stand, only a select few of the
functional groups can be differentiated within nanoeukaryotic
communities; coccolithophores and cryptophytes (Tarran
et al. 2006; Tarran and Bruun 2015). Furthermore, as discussed
above, the application of our technique would help to unlock
detail at the finer size scale that is also poorly characterized by
current in situ imaging flow cytometry. Through developing
our “susceptibility library” with a diverse range of taxa, we also
expect that our technique could help to tease out more infor-
mation from previously labeled unknown “nano-phytoflagel-
late” populations in natural communities, which are
notoriously problematic for taxonomists due to their similar
sizes and morphology when viewed under the microscope
(Widdicombe et al. 2010; Piwosz 2019). For example, both
“Pavlovales” and “Prymnesiales” haptophyte groups in this
study had F1-scores of > 0.65, indicating that while they
might be of a similar size and morphology (and thus are likely
“nano-phytoflagellate” candidates), they are somewhat distin-
guishable by their susceptibility to the electrochemically
driven oxidative conditions.

Summary
We have presented a novel fluoro-electrochemical technique

for classifying marine nanophytoplankton, and critically
assessed this by testing its ability to predict phytoplankton
groupings from two simple parameters: charge required to
reduce per cell Chl a fluorescence by 50% and effective cell
radius. This returned an excellent degree of accuracy when only
considering taxa belonging to key functional groups (5 groups),
but a reduced degree of accuracy when a broader range of
groups, encompassing likely “nano-phytoflagellates,” were con-
sidered (11 groups). We demonstrate that the technique relies
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on the general positive size scaling of the susceptibility across
the groups to provide additional distinguishing power, and
when size is normalized for there are some groups that demon-
strate exceptional resilience to the highly oxidative conditions
of our technique, notably “Calcifying Isochrysidales” and
“Eustigmatales.” This presents an avenue for further investiga-
tion into the biological underpinnings of this new method.
Although the technique currently has its limitations as we
report, with advancement of the set-up to make complimentary
measurements, the predictive power of the method could be
enhanced. Critically, if the technique is to eventually be used
for real world in situ measurements, the next step of assessment
is to test its ability in quantifying abundance of different group-
ings in natural samples alongside more traditional techniques.
If such further testing yields positive results, we anticipate that
our technique could be adapted to work in conjunction with
autonomous platforms, with the potential to greatly enhance
our ability in monitoring nanophytoplankton community
structure.
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