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ABSTRACT Low temperature limits the growth and the distribution of the key oceanic
primary producer Prochlorococcus, which does not proliferate above a latitude of ca. 40°.
Yet, the molecular basis of thermal acclimation in this cyanobacterium remains unexplored.
We analyzed the transcriptional response of the Prochlorococcus marinus strain MIT9301 in
long-term acclimations and in natural Prochlorococcus populations along a temperature
range enabling its growth (17 to 30°C). MIT9301 upregulated mechanisms of the global
stress response at the temperature minimum (17°C) but maintained the expression levels
of genes involved in essential metabolic pathways (e.g., ATP synthesis and carbon fixation)
along the whole thermal niche. Notably, the declining growth of MIT9301 from the
optimum to the minimum temperature was coincident with a transcriptional suppres-
sion of the photosynthetic apparatus and a dampening of its circadian expression pat-
terns, indicating a loss in their regulatory capacity under cold conditions. Under warm
conditions, the cellular transcript inventory of MIT9301 was strongly streamlined, which
may also induce regulatory imbalances due to stochasticity in gene expression. The day-
time transcriptional suppression of photosynthetic genes at low temperature was also
observed in metatranscriptomic reads mapping to MIT9301 across the global ocean,
implying that this molecular mechanism may be associated with the restricted distri-
bution of Prochlorococcus to temperate zones.

IMPORTANCE Prochlorococcus is a major marine primary producer with a global impact
on atmospheric CO2 fixation. This cyanobacterium is widely distributed across the tem-
perate ocean, but virtually absent at latitudes above 40° for yet unknown reasons.
Temperature has been suggested as a major limiting factor, but the exact mechanisms
behind Prochlorococcus thermal growth restriction remain unexplored. This study brings
us closer to understanding how Prochlorococcus functions under challenging temperature
conditions, by focusing on its transcriptional response after long-term acclimation from
its optimum to its thermal thresholds. Our results show that the drop in Prochlorococcus
growth rate under cold conditions was paralleled by a transcriptional suppression of the
photosynthetic machinery during daytime and a loss in the organism’s regulatory capacity
to maintain circadian expression patterns. Notably, warm temperature induced a marked
shrinkage of the organism’s cellular transcript inventory, which may also induce regulatory
imbalances in the future functioning of this cyanobacterium.
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Prochlorococcus is the most abundant photosynthetic organism on Earth (1) and a major
contributor to oceanic primary production (2). Despite sustaining vast populations at

the global scale, Prochlorococcus exhibits an enigmatic distribution in the ocean, with a sharp
latitudinal barrier at ca. 45°N and 40°S (3, 4). While the ultimate reasons for such restricted
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distribution are still unknown and may involve biotic interactions (5), temperatures in the
range of 12 to 15°C typically limit the growth of Prochlorococcus in culture (3, 6, 7) and
in situ (3), potentially representing critical thresholds for the metabolism of this cyanobacte-
rium. Due to genome streamlining, Prochlorococcus is assumed to have a lower regulatory
capacity than other phytoplankton groups and a limited metabolic flexibility to adapt to
environmental disturbance, including temperature changes (8–10). However, a mechanistic
understanding of Prochlorococcus’ temperature sensitivity at the molecular level is still
lacking.

In general, addressing the impact of temperature on the functioning of any organism is
complex, as this parameter has overriding effects on virtually every aspect of cell physiology.
Temperature notably impacts the cellular size, stability, and conformation of macromole-
cules and the kinetics of biochemical reactions, altogether leading to differences in cell
growth (11). In the case of photosynthetic organisms such as Prochlorococcus, growth is
closely linked to the photosynthetic capacity, which is also impacted by temperature
(12–14). Under temperature conditions below the optimum, the slowdown in carbon fix-
ation rates constrains the replenishment of terminal acceptors of the photosynthetic
electron flow, producing an imbalance between photochemistry and metabolism. Under
these conditions, the excess of light energy absorbed can generate cell-damaging reac-
tive oxygen species (ROS), which need to be counterbalanced by photoprotective mech-
anisms (15). Under heat stress conditions (35 to 50°C), ROS are also typically produced, likely
not as a result of an excess of energy absorbed, but as a result of heat-induced structural
and functional changes in the photosystems and thylakoid membranes (16). The decline
in photosynthetic activity in phototrophs under moderate warm stress has been associ-
ated with different processes, including the inhibition of de novo synthesis of the photo-
system II D1 protein by ROS (17), the inactivation of the oxygen-evolving complex (18),
and declines in electron transport (19).

At the expression level, a variety of compensatory mechanisms have been found to be
activated in several phytoplankton groups (i.e., Synechococcus and eukaryotic phytoplank-
ton) to preserve cell functioning under thermal stress conditions (12–14, 20–23). The cold
stress response network involves the upregulation of fatty acid desaturases to offset decreases
in membrane fluidity at low temperature and RNA helicases and cellular chaperones to
facilitate proper folding of nucleic acids and proteins (21, 22, 24, 25). Low temperature
can also impact the expression of central components of the transcriptional and transla-
tional machinery in eukaryotic phytoplankton, which are upregulated to compensate for
their reduced efficiency (21, 26), and even impact global regulatory networks, such as circa-
dian rhythms in cyanobacteria (27). At elevated temperatures, a nearly universal response
induces the expression of heat shock proteins, which degrade or restructure denatured
proteins and nucleic acids (28).

Some of the temperature compensatory mechanisms involve only short-term tran-
scriptional responses until cell functioning is restored (25). In other cases, the baseline
expression of key enzymes is upregulated under long-term cold acclimations (26).
Beyond short-term temperature manipulation experiments, where cells are suddenly
exposed to a “thermal shock,” understanding mechanisms of long-term acclimation is
particularly relevant as they more accurately reflect responses to gradually changing
thermal conditions. Here, we performed a series of experiments on Prochlorococcus mari-
nus MIT9301, where cells were progressively exposed from a temperature close to their
optimum to their upper and lower thresholds of growth. This strain, which is a represen-
tative of the Prochlorococcus dominant clade in situ (HLII) (29, 30), was selected because
it shares the highest sequence similarity with environmental sequences (31) and enabled
the identification of closely related transcripts in natural Prochlorococcus populations.
We first used a quantitative transcriptome sequencing (RNA-Seq) approach (32, 33) to
decipher the transcriptional response of MIT9301 to temperature acclimations. Then, we
addressed the environmental relevance of one of the most conspicuous transcriptional
responses observed in MIT9301, involving highly expressed photosynthetic genes, in
oceanic metatranscriptomes collected along a comparable thermal gradient. Our objective
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was to analyze how sustained growth at suboptimal temperature reprograms the transcrip-
tome of Prochlorococcus and significantly advance our understanding of which mechanisms
underlie the organism’s growth restriction under cold and warm conditions.

RESULTS
Thermal acclimation experiments with Prochlorococcus marinus MIT9301: growth

rates and mRNA content. MIT9301 cultures were synchronized to a diel 12-h/12-h light/
dark cycle and long-term acclimated to six temperatures along the organism’s thermal range
(Fig. 1; see Fig. S1 in the supplemental material). MIT9301 could not survive single-genera-
tion transfers below 17°C or above 30°C, and thus, these were considered minimum and
maximum temperature thermal thresholds for this strain (here, Tmin and Tmax, respec-
tively). The growth rate of MIT9301 increased from 0.17 day21 at Tmin to ca. 0.61 day21 at
25°C (here referred to as the optimum growth temperature [Topt]) and thereafter entered
a warm stress zone up to 30°C, where no further increases in growth rate were observed
(Fig. 1A). The average size of MIT9301 cells also changed along the thermal gradient, with
maximum and minimum values at the Tmin and Tmax, respectively (Fig. 1A).

After the acclimation period, RNA samples were collected under five different tempera-
ture conditions 3 h after subjective sunrise and sunset (daytime and nighttime, respectively)
(see Table S1 in the supplemental material). Large variations in the number of mRNA tran-
scripts per cell were found in replicate cultures acclimated to 17 and 20°C during daytime,
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FIG 1 Growth rates, cell size, and number of mRNA transcripts per cell in samples of Prochlorococcus
marinus MIT9301 collected after long-term thermal acclimation. Between 3 and 7 biological replicate
samples are represented, depending on the temperature treatment, and error bars report the standard
deviation between replicates. On the top of each plot, the minimum (Tmin), optimum (Topt), and maximum
(Tmax) temperatures are indicated, and additionally, in the upper left plot, temperature treatments where
RNA samples were collected are shown with arrows. (A) Growth rate and size of MIT9301 cells along the
thermal niche. (B) Estimates of mRNA transcripts per cell along the thermal niche in samples collected at
daytime (left panel) and nighttime (right panel). Lowercase italic letters denote statistically significant
differences (analysis of variance [ANOVA] and Tukey post hoc test; P , 0.001).
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while values were highly constrained in temperatures close to the optimum (22 and 25°C)
(Fig. 1B). A pattern of decrease of mRNA transcripts with increasing temperature was found,
with the average number of mRNA transcripts per cell being positively correlated with
cellular size in nighttime samples (Spearman r = 0.89; P , 0.001).

Quantitative global transcriptomic analysis of MIT9301 in experimental long-term
acclimations. The top-expressed genes in MIT9301 were associated with photosynthetic
components (e.g., psbA and psbC), the RuBisCO enzyme (rbcL) or an ammonium transporter
(amt), which reached average values above two mRNA transcripts per cell (Table S2 and
Table S3). However, the average abundance of most mRNA transcripts was at least 1 order
of magnitude below that value, which indicates that only a fraction of the population was
actively expressing them at any given time. Estimates of mRNA transcript abundance were
normalized by cell biovolume (i.e., transcripts per cubic micrometer, or [mRNA]) (Table S4),
to discard potential indirect effects of cell size on transcript abundance in further analyses.

A substantial fraction of MIT9301 genes were differentially expressed along the temper-
ature gradient (i.e., exhibited significant variations in cellular [mRNA] estimates at different
temperatures). In total, 61% of MIT9301 protein-coding genes were differentially expressed
at nighttime, while this number was reduced to 30% during daytime (Kruskal-Wallis test;
P , 0.05), in association with an increase in the variability of gene expression levels; while
[mRNA] values of individual genes in different biological replicates were highly constrained
at the Topt, a large variation was found during daytime at both thresholds of growth and
particularly at the Tmin (Fig. 2 and 3; Table S4). This suggests a reduced ability of MIT9301
cells to maintain a tight transcriptional control under challenging temperature conditions
when cells are exposed to light. Notably, the expression of some sigma factors and key
regulatory proteins from different families also showed this pattern (Fig. 3A and B).

We identified five clusters of genes according to their patterns of daytime and nighttime
expression at different temperatures (Fig. 2). More than 90% of MIT9301 protein-coding
genes were assigned to one of these clusters with a probability score of .0.5 (Table S5),
which indicates that these clusters were highly representative of the main thermal gene
expression responses in this strain. Clusters A and E were represented by genes involved
in core cellular and metabolic processes typically expressed in Prochlorococcus during
daytime and nighttime, respectively (34). Clusters C and D were associated with mecha-
nisms of cold stress response, as they were characterized by a strong upregulation at the
Tmin either during daytime or during both daytime and nighttime, respectively. Finally,
the expression of genes in cluster B showed a decreasing trend from the Topt toward the
Tmin during daytime (Fig. 2), paralleling the pattern observed in growth rates along the
thermal niche (Fig. 1A). Therefore, we hypothesize that the expression of cluster B genes is
associated with metabolic processes limiting the growth of Prochlorococcus when exposed
to cold conditions.

Cluster A included genes related to C fixation and assimilation, such as RuBisCO (rbcLS),
CO2 transporters (csoS2), carboxysome shell proteins (ccmK), the Calvin cycle (e.g., gap2, tktA,
glpX, pgk, and cbbA), and glycogen synthesis (glgABC), consistently expressed during day-
time along the thermal gradient (Fig. 2; Table S4 and Table S5). This cluster also included
ATP synthesis genes (atpADE) and a few components of photosystem II (PS II) (psbA, psbC,
and psbD). Cluster E included genes related to catabolic consumption (cyoB and ndhD),
DNA replication (dnaA, nrdJ, and gyrB), cell division (ftsZYQ), and the pentose phosphate
pathway (tal, gnd, and zwf), all of them upregulated at nighttime. Altogether, these essential
pathways likely represent a transcriptional core, which Prochlorococcus marinus MIT9301
maintains under all temperature conditions.

Clusters C and D genes included different elements of the global stress response, such as
cellular chaperones (groES/groES, dnaK, and clpBCP) (35, 36) and fatty acid desaturases (desA
and desC), as well as mechanisms against oxidative damage, such as DNA repair (recA and
ruvB) (37, 38), superoxide dismutase (sod), and the synthesis of antioxidant compounds like
carotenoids (pds and crtBH) and rubredoxin (rub) (Fig. 2 and 3; Table S5). Notably, the expres-
sion of the chaperones groEL/groES, grpE, and htpG was strongly upregulated at the Tmin

only during daytime, suggesting a prioritization of their expression during the light-exposed
period (Fig. 3C). Other metabolic processes upregulated at the Tmin were the mobilization
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of energy storage (i.e., glycogen degradation, glgP), and the synthesis of proteins,
as reflected by the increase in the [mRNA] of amino acid synthesis genes (glyA, serA,
and leuA), translation initiation factors (infABC) and N acquisition genes (Fig. 2 and 3;
Table S4).
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The strong upregulation of N acquisition mechanisms at the Tmin under light condi-
tions was observed not only for genes predominately expressed during daytime at the
Topt (i.e., the global nitrogen regulatory protein gene ntcA, glnA, and urea transporter
genes), but also for genes typically expressed at nighttime in Prochlorococcus, such as
the ammonium transporter (amt) and urease (ureABC) genes (Fig. 3D; Table S4). This
likely reflects the large cellular demand of N for protein synthesis during daytime under
cold stress conditions. In the case of phosphate uptake, the high-affinity ABC transporter
pstABC genes were upregulated under cold conditions at night, following the pattern of
cluster E genes, possibly related to the cellular demand of P for DNA replication. In con-
trast, both copies of the periplasmic phosphate binding protein (pstS) showed maximum
expression values around the Topt during daytime, following the pattern of most photosyn-
thetic genes (cluster B), which highlights the complexity of the thermal response of nutri-
ent acquisition genes (Fig. 3D).

Finally, the expression of all components of the PS I complex (psaABDEFKL) and some
of PS II (including psbBJH and the oxygen-evolving complex protein psbO) showed a
gradual decrease in expression from a temperature close to the optimum to the Tmin, (Fig. 2)
in correlation with MIT9301 growth rates (Fig. 1). This expression pattern was different from
those of other PSII components (psbACD [described above]), which were not differentially
expressed during daytime along the thermal niche (Kruskall-Wallis; P . 0.05) (Fig. 2).
Similarly, many components of the photosynthetic electron transport genes were assigned
to either cluster B (petACGNM) or cluster A (petBEDH), implying a nonuniform transcriptional
thermal response of all components of the photosynthetic apparatus (Fig. 4). Yet, a general
pattern of upregulation of photosynthetic genes during nighttime under cold conditions
was observed (Fig. 2), inducing changes in their day/night log2 fold expression ratio. This
result suggests a loss in the capacity of cells to regulate their circadian expression under
cold conditions. Accordingly, the day-night expression patterns of the circadian clock kaiBC
genes were also impaired at the Tmin (Fig. 2).

Transcriptional response of photosynthetic genes in naturally occurring
Prochlorococcus populations. After addressing the impact of thermal acclimation on
MIT9301, we next aimed to test whether the transcriptional suppression of photosynthetic
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genes at the cold temperature observed experimentally was also found in natural
Prochlorococcus populations in situ. For this, we identified reads closely related to MIT9301
in the Tara Oceans metatranscriptome data set (39), including samples distributed across dif-
ferent ocean basins along a comparable thermal gradient (Table S6). The number of reads
mapping to MIT9301 ($98% identity following our two-step filtering strategy [see Materials
and Methods]) ranged from 6,379 to 9.62 million in the different environmental samples
(Table S7). The DESeq2-normalized abundance of transcript counts from some of the most
actively expressed genes of PS II (psbA and psbD) did not show any significant trend along
the in situ thermal gradient from 17 to 30°C (Spearman correlation; P . 0.05), mirroring the
response observed under culture conditions (Fig. 5; Fig. S2). In contrast, other PS II compo-
nents (psbJ) were positively correlated with temperature in both the experimental and
in situ data sets (Spearman R = 0.6; P, 0.01), indicating a downregulation at cold tempera-
ture (Fig. 5). Similarly, the downregulation of PS I genes at cold temperature was clearly
observed both in the experimental and in situ data sets (Fig. 5), reinforcing the environmen-
tal relevance of this response. Temperature had the strongest correlation to photosynthetic
transcript counts in comparison with all other tested environmental variables (Fig. S3), indi-
cating that these correlations were not driven by covarying environmental parameters.

DISCUSSION

There is a remarkable gap of fundamental knowledge of the molecular mechanisms
of thermal acclimation in Prochlorococcus, as previous studies have concentrated on their
cyanobacterial sister clade Synechococcus and eukaryotic phytoplankton (12–14, 20–22,
40, 41). Acquiring this knowledge is crucial for answering a long-standing question: what
limits the ability of Prochlorococcus to expand to high-latitude environments? The decrease
in the light-harvesting capacity of phytoplankton under cold conditions has been typically
attributed to changes in the conformation of membrane lipids and proteins of their photo-
synthetic apparatus (14, 42). Our quantitative gene expression analysis shows that, in the
case of Prochlorococcus, the inability to maintain the organism’s photosynthetic capacity
under cold conditions is already critically compromised at the transcriptional level, as we found
a clear suppression of the expression of most photosynthetic genes under cold conditions.
The same pattern was found for reads mapping to MIT9301 in in situ metatranscriptomes
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FIG 5 Expression patterns of a selection of Prochlorococcus photosynthetic genes of photosystem II (psbA and
psbJ) and photosystem I (psaA, psaB, and psaF) along the thermal gradient 17 to 30°C in experimental acclimations
(as analyzed in P. marinus MIT9301 by transcriptomics [left panel]) and in situ environmental conditions (as analyzed
in reads mapping to MIT9301 identified in metatranscriptomes of the Tara Oceans data set [right panel]). In both
cases, reads were normalized using DESeq2 and log transformed. Linear regression lines are shown for all genes with
significant Spearman correlation coefficients at a P value of ,0.05 (indicated in the plots).
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across the global ocean, suggesting that this molecular mechanism may be relevant to
explain the restricted distribution of Prochlorococcus to temperate zones. Notably, this
response differs from those of previous studies targeting diatom cultures (26) or phyto-
plankton communities in situ (21, 39), indicating fundamental differences in the ability of
Prochlorococcus to respond to cold temperature, which may be related to the organism’s
exceptionally high sensitivity to oxidative stress (38, 43, 44).

Photosystems are naturally sensitive to light damage, which is exacerbated under low
temperature (22). The cellular decision to shut down the sunlight energy conversion sys-
tem under cold conditions likely arises from the inability of Prochlorococcus to cope with
uncontrolled redox chemistry when there is an imbalance between the production of
excited electrons by light and their metabolic consumption. The downregulation of photo-
systems would represent an emergency mechanism to slow down the electron flow and
prevent the production of cell-damaging ROS (45, 46). Notably, the response was not equal
for all photosystem components, as previously observed in cultured Prochlorococcus strains
undergoing other types of stress, such as iron starvation (47), phage infection (48), or high
light exposure (49). On the one hand, the high expression of psbA transcripts under all tem-
perature conditions is likely related to the need to maintain an exceptionally high turnover
rate of this protein (50), being under a different regulatory regime from other PS compo-
nents (34, 51, 52). On the other hand, the selective downregulation of PS I probably arises
from the strong need to protect PS I from oxidative stress, as this photosystem typically lacks
efficient repair machinery, and therefore its damage may be practically irreversible (53).
Interestingly, MIT9301 also upregulated the plastoquinol terminal oxidase (PTOX) at
the Tmin (Fig. 2), which is thought to function as a safety valve in cyanobacteria to avoid
electron flow toward PS I (54).

In addition to the transcriptional suppression of photosynthetic genes, we found that
under light conditions, cold temperature induced a loss in the regulatory capacity of
MIT9301 cells (Fig. 2). This was reflected in the loss of the circadian day/night gene
expression ratio and the increased variability in the concentration of cellular mRNA tran-
scripts among biological replicates. In a previous study, it was suggested that higher lev-
els of stochasticity in Prochlorococcus gene expression during the transition from photo-
synthesis to the use of internal energy is related to the accumulation of ROS (55). Our
transcriptomic results are consistent with the idea of oxidative stress impacting the regu-
latory capacity of Prochlorococcus, as we found the upregulation of different genes
against this source of stress under cold conditions (Fig. 2 and 3). Notably, at the Tmin we
observed a high variability in the expression of regulatory proteins that modulate the cel-
lular response to daily light fluctuations in cyanobacteria, including sigma factors (rpoD)
(56, 57), the NblS-RpaB two-component system (58), and the SasA-RpaA clock output system
(59, 60) (Fig. 3). Assuming that mRNA transcript levels reflect the protein levels of these regu-
lators, our results would imply a critical impairment of their coregulated networks. Other
mechanisms of transcriptional regulation in Prochlorococcus (i.e., RNA-based regulatory strat-
egies) (61) were likely also compromised at low temperature, as evidenced by the upregu-
lation of the RNase rne gene at the Tmin (see Table S4 in the supplemental material).

Marked changes in the day/night gene expression ratio of some of Prochlorococcus
key functional genes along the thermal niche imply a deregulation of one of their funda-
mental features: i.e., the coordination of transcriptional oscillations with the daily light/
dark cycle. This feature is key to optimize cellular processes through anticipating and syn-
chronizing transcription of photosynthetic genes with daylight hours (34, 62, 63). At Topt, the
day/night expression preferenda of most key functional genes of MIT9301 matched those
previously observed in the model strain MED4 (34), reinforcing the idea that maintaining
this transcriptional choreography is a highly conserved and critical trait. The deregulation
observed at the cold temperature led to the paradoxical situation where, after subjective
sunrise, chilled Prochlorococcus MIT9301 cells contained severalfold less PS I transcripts than
after subjective sunset, which supports the idea of a malfunctioning regulatory network
(Fig. 2). With only two samplings over the daily cycle, we cannot ensure whether the
observed changes were due to random misregulations or variations in the phasing or
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amplitude of their diel gene expression patterns. Yet, considering that we were sampling
the two daily periods when most Prochlorococcus genes show maxima in expression (34),
the inversion of their day/night preferenda is remarkable and likely has an important impact
on Prochlorococcus fitness.

In contrast to the pattern observed in day-time samples, genes related to Prochlorococcus
cell division cycle, typically expressed during nighttime, showed rather constrained [mRNA]
values between replicates. We observed an increase in [mRNA] of those genes toward cold
conditions, which may be related to the predominant cell cycle phase of the cells. As the
timing of cell division is delayed in Prochlorococcus marinusMIT9301 when acclimated to
cold temperature (64), our results likely reflect a situation where a higher proportion of
cells were still undergoing the S phase at 17°C and 20°C at the time of sampling (i.e., 3 h
after subjective dusk) compared to other acclimation temperatures.

At the warm temperature threshold, the upregulation of a variety of cellular chaperones
(e.g., groEL/groES, htpG, and grpE) reflected that cells were undergoing substantial stress.
However, no drastic changes were generally observed in the expression of most protein-
coding genes at the Tmax. Accordingly, a previous study on the short-term response of
MED4 to warm stress found that the synthesis of new polypeptides was not induced (65).
We had previously shown that Prochlorococcus MIT9301 cells decrease in size after long-
term warm acclimation, in accordance with the temperature-size rule (64). Interestingly,
here, we found a conspicuous streamlining in the transcript inventory of cells in parallel with
the progressive reduction in cell size (Fig. 1). While at nonrestricting growth temperature,
the average estimate of mRNA transcript abundance per cell was within the range reported
for environmental marine bacteria (i.e., ca. 85 to 255 transcripts per cell) (32), under warm
conditions this average dropped down to 30 mRNA transcripts of protein-coding genes per
cell at nighttime. At increasing temperatures, cells may require a lower mRNA content to
achieve the same translation rates, as suggested for rRNA content in the translation-com-
pensation hypothesis (66). Yet, it should be considered that cellular reactions involving small
numbers of molecules are intrinsically noisy, being dominated by fluctuations in concentra-
tion and stochasticity (67, 68). Thus, the decline in the transcript inventory under warm con-
ditions also invites the hypothesis that there is a critical threshold in the number of mRNA
copies beyond which cells lose regulatory capacity, contributing to the growth arrest.

In summary, previous studies on phytoplankton have identified the cellular membrane
and translational apparatus as central elements associated with the thermal adaptation at
the transcriptional level (21, 26). Some of these mechanisms were also observed in MIT9301,
such as the cold upregulation of the translational machinery, likely to compensate for the
general slowdown in protein synthesis rates, and fatty acid desaturases critical for maintain-
ing the fluidity of cellular membranes (24). Yet, we found that in the case of Prochlorococcus,
a general downregulation of photosystem components and impairment in their circadian
expression patterns emerged as major features potentially impacting their physiology when
approaching cold conditions. Low temperature has been previously shown to nullify the cir-
cadian rhythm in different organisms, including plants and different phytoplankton species,
moving the circadian oscillation to a damped oscillation (see references in reference 27).
Prochlorococcus contains only a minimalist circadian system; thus, its cell cycle is likely more
easily perturbed than that from organisms containing a complete kaiABC gene set. As oxida-
tive stress relates to both the need to protect the photosynthetic machinery and the ability
of Prochlorococcus species to “reset” their daily cycles in the morning hours (69), it is plausi-
ble to link this source of stress to the molecular response observed, but experimental evi-
dence would be required to confirm this point.

The disruption of the transcriptional choreography in Prochlorococcusmay be a differ-
entiating factor compared to Synechococcus and eukaryotic phytoplankton, which do not
require maintenance of such a fine-tuned daily expression rhythm to maintain their me-
tabolism. The higher tolerance of Synechococcus species to oxidative stress (38) may also
imply a more resilient photochemistry when exposed to cold conditions, enabling them to
colonize higher latitudes. Additionally, we postulate that increased levels of stochasticity in
gene expression under challenging temperature conditions may contribute to a decrease
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in Prochlorococcus fitness. These remain as interesting hypotheses to test in future studies,
with implications for the functioning of this global primary producer and, thus, marine
carbon biogeochemistry under future oceanic conditions.

MATERIALS ANDMETHODS
Growth of cultures and temperature acclimation. We grew nonaxenic cultures of Prochlorococcus

marinus MIT9301 obtained from the Roscoff Culture Collection (RCC) in PCR-S11 culture medium (70),
based on Red Sea salt (Houston, TX, USA). Cultures were grown under a 12-h/12-h photoperiod and irradiance
of 120mmol quanta m22 s21 in polycarbonate flasks with vented caps. During the acclimation, we maintained
the cultures in exponential growth by performing serial transfers before cell density reached 30% of the maxi-
mum yield. The acclimation started from 22°C (i.e., temperature of maintenance in RCC), and temperature was
progressively changed toward the upper and lower thermal thresholds. At each acclimation step, the tempera-
ture was changed by a maximum of 2°C and down to 0.2°C when approaching the temperature thresholds, to
avoid lethal thermal stress (see Fig. S1 in the supplemental material). We considered that the culture had been
fully acclimated to a temperature treatment when the growth rate stayed stable in at least two consecutive
growth curves after at least 8 generations. Flow cytometry was used for sustained monitoring of the culture
growth during the acclimation process. Samples were fixed with glutaraldehyde (final concentration of
0.025%) for 10 min at room temperature and under dark conditions and frozen at 280°C until analysis in a
FACSCalibur flow cytometer (Becton Dickinson). Estimates of cell diameter were obtained based on the natural
logarithmic-transformed side scatter (SSC) using the calibration provided in reference 71. Cell volumes were
calculated from the resulting estimates of cell diameter, assuming a spherical cell shape.

RNA sample collection and extraction. Once the cultures reached full acclimation to the tempera-
tures selected (17, 20, 22, 25, and 30°C), we reinoculated biological replicate batch cultures into fresh
medium (160 mL) and collected samples for RNA-Seq analysis during exponential growth (with cell density val-
ues ranging between 6 � 107 and 17 � 107 cells mL21) (see Table S1 in the supplemental material). For each
temperature and biological replicate (ranging from 3 to 7, depending on the experimental treatment) (Table S1),
samples for RNA extraction were collected 3 h after the onset and offset of the photoperiod (daytime and night-
time, respectively). Exceptionally, for the acclimation temperature 22°C, only daytime RNA samples were available.
Samples were filtered on 0.22-mm-pore-size polyethersulfone (PES) filters using a vacuum pump at a pressure of
5 lb/in2. Immediately after filtration, filters were snap-frozen in liquid nitrogen and stored at 280°C. The time
elapsed from the start of the filtration until freezing was always less than 2 min.

Quantitative benchmarked RNA extraction was performed following reference 33 using five RNA
standards from Saccharolobus solfataricus (formerly Sulfolobus solfataricus) P2 (NCBI Taxon ID 273057) obtained
by in vitro transcription of genomic templates of the isolate (standards 3, 6, 7, 13, and 14, as described in refer-
ence 33). The filters were spiked with the RNA standards individually (10 to 28 mL) at a concentration of ca.
20 pg mL21 prior to the initiation of the RNA extraction. Subsequently, RNA samples were extracted with the
mirVana kit (Ambion), and DNA was removed using the TURBO DNase (Ambion). Samples were depleted from
rRNA using the Ribo-Zero rRNA removal kit (Bacteria; Illumina), and a quality check was performed using a
Bioanalyzer (Agilent). mRNA samples were concentrated using the Zymo Clean & Concentrator kit, and cDNA
libraries were constructed using the TruSeq stranded mRNA sample preparation kit (Illumina). cDNA libraries
were sequenced as 75-bp paired-end reads on an Illumina HiSeq v4 platform (CNAG, Spain).

Quantitative gene expression analysis of Prochlorococcus MIT9301 under culture conditions.
The sequence read quality check was performed with the FastQC tool (72), and Trimmomatic (73) was
used to trim raw sequences (SLIDINGWINDOW:50:35 and MINLEN:50) and pair those passing quality
thresholds. rRNA sequences were removed using SortMeRNA (74), and the remaining reads were
mapped with Bowtie2 (75) (using the “–non-deterministic” parameter) against the Prochlorococcus mari-
nus MIT9301 genome (NCBI Taxon ID 167546). The same procedure was done with the S. solfataricus ge-
nome to identify RNA internal standard reads. Read count tables were obtained using HTSeq (76) with
the following parameters: “–stranded = reverse -a 10 -m intersection-nonempty.” Quantitative estimates
of individual transcript abundance (Ta) of MIT9301 protein-coding genes in each RNA sample were obtained
following the calculations described in (77): Ta = (Ts� Sa)/Ss. Ta corresponds to the estimated number of tran-
scripts of an individual MIT9301 protein-coding gene, Ts corresponds to the number of reads assigned to the
corresponding MIT9301 protein-coding gene, Sa corresponds to the molecules of internal RNA standards
spiked to the RNA sample, and Ss corresponds to the number of reads assigned to S. solfataricus internal stand-
ards. In this calculation, one of the standards (standard 14) was removed from the analysis because it was con-
sistently recovered in higher proportion than other standards. Ta values were divided by total cell abundance
or estimates of total cell biovolume collected in the corresponding RNA filter to obtain estimates of transcript
abundance per cell and per volume (i.e., transcript concentration), respectively (Table S1 to Table S3). This nor-
malization is relevant because cell size, which varies over the thermal gradient in this strain (Fig. 1A), can
impact the number of cellular transcripts (78, 79).

Bioinformatic analysis of transcriptional patterns of Prochlorococcus photosynthetic genes in
oceanic samples and culture conditions. For comparison of the expression patterns of Prochlorococcus
photosynthetic genes along the same thermal gradient under environmental and culturing conditions,
two data sets were produced using a common normalization method (DESeq2) (80). The experimental
data set was obtained from the raw read counts obtained by HTSeq2 in the long-term thermal acclimation
experiments, as explained above. To obtain the environmental database, a data set of Tara Oceans meta-
transcriptomes (39) was initially selected based on the latitude range where Prochlorococcus is found in
the ocean (i.e., between 45°N and S), the thermal range of MIT9301 (17°C to 30°C), and the time of sample
collection (between 6 a.m. and 12 p.m., when the expression of photosynthetic genes should be close to their
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maximum). Fastq sequence files were quality filtered with fastp (81) using default parameters, and rRNA
sequences were removed with RiboDetector (82) with the option “–ensure” selected. The remaining reads
were filtered to remove reads not affiliated with Prochlorococcus, using a custom-made database with the com-
plete genome sequences in the MarRef database, which included 16 Prochlorococcus and 17 Synechococcus
genomes (83), and eukaryotic genes of interest extracted from Refseq (84): i.e., psaA, psaB, psaD, psaF, psaL,
psbA, psbD, and psbO, searched with Entrez filter [Gene Name] AND ((protists[filter] OR plants[filter]) AND
refseq[filter]). Metatranscriptome sequences closest to Prochlorococcus were identified based on blastn
v.2.12.01 searches (identity of $98% and bitscore of $30), and only those with the highest bitscore to
Prochlorococcus sequences were considered further. Subsequently, we applied a two-step filtering strategy to
obtain read counts closely related to MIT9301. First, we aligned each metatranscriptome sample against the
MIT9301 genome using BWA mem v.0.7.17-r1188 with default parameters (85). Next, we discarded alignments
that had a percentage of identity lower than 98%, a read length lower than 50 bases, and a number of
matches lower than 50% of the total length of each aligned sequence. The percentage of identity was com-
puted as 100 � [N_m/(N_m1 N_i)], where N_m corresponds to the number of matches in the alignment and
N_i to the number of mismatches. The number of matches was obtained by parsing the MD tag of the align-
ment record, while the number of matches and mismatches was obtained from the CIGAR string in the SAM
file. Once alignments were filtered, we proceeded to count aligned reads with HTSeq v.2.0 with default param-
eters (86). Next, we removed noncoding genes from the count matrices as well as genes that had no counts
across all conditions, to facilitate the consequent normalization. We also discarded samples that had counts of
less than 10 genes other than the psbA gene. Finally, we normalized count data using the default DESeq2
v.3.15 count normalization workflow (80). All analyses were assisted with customized Python code (87) avail-
able at https://github.com/Robaina/prochlorococcus (88).

SoftClustering and statistical analyses. Clusters of differentially expressed genes that responded
similarly over the thermal gradient were identified using SoftClustering following reference 89. A matrix of
n genes � 9 treatments (4 temperatures at nighttime and 5 temperatures at daytime) was used as input
data. Data for each gene were standardized to zero mean and unit variance. The optimal value of the pa-
rameter m in the Mfuzz algorithm was estimated through randomization following reference 90. The num-
ber of clusters was chosen to maximize the functional enrichment of gene clusters (COGs) and the
ClusterJudge method (91). The standardized data were clustered by a generalized version of the Fuzzy c-
means algorithm. Finally, statistically significant differences in cellular transcript concentration among tem-
perature regimes were determined by the Kruskall-Wallis test using R.

Data availability. Raw reads have been submitted to ENA under project no. PRJEB54738 (accession
no. ERS12467859 to ERS12467904).
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