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Abstract. Recent works have investigated use of the hydro-
gen isotopic composition of C37 alkenones (δDK37s), lipid
biomarkers of certain haptophyte microalgae, as an indepen-
dent paleosalinity proxy. We discuss herein the factors im-
peding the success of such an application and identify the
potential alternative use ofδDK37s measurements as a proxy
for non-thermal, physiological stress impacts on theUK ′

37 pa-
leotemperature index. Batch-culture experiments with the
haptophyteEmiliania huxleyi(CCMP 1742) were conducted
to determine the magnitude and variability of the isotopic
contrasts between individual C37 alkenones. Further experi-
ments were conducted withEmiliania huxleyi(CCMP 1742)
andGephyrocapsa oceanica(PZ3-1) to determine whether,
and to what extent,δDK37s varies between the physiological
extremes of nutrient-replete exponential growth and nutrient-
depleted senescence.Emiliania huxleyi was observed to
exhibit an isotopic contrast between di- and tri-unsaturated
C37 alkenones (αK37:3−K37:2≈0.97) that is nearly identical
to that reported recently by others for environmental sam-
ples. Furthermore, this contrast appears to be constant with
growth stage. The consistency of the offset across different
growth stages suggests that a single, well-defined value for
αK37:3−K37:2 may exist and that its use in an isotope mass-
balance will allow accurate determination ofδD values for
individual alkenones without having to rely on time- and
labor-intensive chemical separations. The isotopic fraction-
ation between growth medium and C37 alkenones was ob-
served to increase dramatically upon the onset of nutrient-
depletion-induced senescence, suggesting thatδDK37s may
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serve as an objective tool for recognizing and potentially cor-
recting, at least semi-quantitatively, for the effects of nutrient
stress onUK ′

37 temperature records.

1 Introduction

1.1 The premise of alkenoneδD as a water composition
proxy

Englebrecht and Sachs (2005) measured C37 alkenone hy-
drogen isotopic composition (δDK37s) in suspended particu-
late matter (SPM) and surface sediments around the Bermuda
Rise, and observed relatively consistent hydrogen isotopic
fractionation factors relative to the overlying surface water
(αK37s−water). Given this finding and results from a batch cul-
ture experiment with the alkenone producerEmiliania hux-
leyi, they argued that alkenones may provide a reliable pale-
oproxy for theδD composition of surface water.

Non-exchangeable hydrogen in photosynthesized organic
matter (e.g. from lipids) necessarily reflects the isotopic com-
position of the water from which it was produced (e.g. Yakir
and DeNiro, 1990). Interpretation of bulk lipidδD measure-
ments is complicated, however, by the differences in net iso-
topic fractionation exhibited by different organisms and by
different individual compounds. These differences are due
to a host of factors, including differences in water transport
into and out of the cell, biosynthetic pathways and relative
synthetic rates (Sessions et al., 1999). Alkenones, though,
are a species-specific biomarker, unique to a small number
of haptophyte algae and usually assumed, in marine sedi-
ments younger than∼280 ky, to be produced predominantly
by Emiliania huxleyi(Herbert, 2003). If the assumption is
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made that a single measured hydrogen isotopic fractionation
factor,α, defined as:

αK37s−water =
δDK37s + 1000

δDwater+ 1000
(1)

is applicable to alkenone synthesis byE. huxleyi, then fos-
sil alkenones (younger than 280 ky) could provide a use-
ful proxy for the isotopic composition of surface water.
Alkenones are an attractive basis for such a proxy because of
their utility as a coeval paleothermometer (Brassell, 1993).
Given certain constraints on the regional isotopic composi-
tion of precipitation and runoff, theδD of surface water may
serve, in turn, as a quantitative proxy for salinity (e.g. Ben-
way and Mix, 2004).

However, the assumption of a single, well-defined value of
αK37s−water is by no means trivial. Time- and space-variable
environmental and physiological factors may affect the net
fractionation between synthesized compounds and ambient
water. Following the work of Englebrecht and Sachs (2005),
Schouten et al. (2006) investigated the effects of temperature
(T ), salinity (S), and growth rate (µ) onαK37s−water in batch
cultures. BothS andµ, but notT , were reported to effect
αK37s−water in the haptophytesE. huxleyiandG. oceanica,
the two most prominent sources of these biomarkers in the
modern ocean.

Although the apparent salinity effect could be beneficial,
acting as an amplifier of the hydrologically-drivenδDK37s
signal (Pahnke et al., 2007), its inclusion in the formulation
of αK37s−water as a function of salinity adds another source
of uncertainty to the proxy calibration (Rohling, 2007).
The possible growth-rate effects identified by Schouten et
al. (2006) would also be problematic for the paleosalinity
application of sedimentaryδDK37s measurements. Variation
in haptophyte growth rate cannot currently be constrained
by proxy without temporal extrapolations of modern con-
ditions or assumptions about paleo-pCO2 (van der Meer et
al., 2008). Consequently, concerns over the convolution of
growth-rate (Laws et al., 1995) andpCO2 effects (Jasper
et al., 1994) on carbon-isotopic fractionation in alkenones
have played a large part in undermining this measure’s util-
ity as a paleo-pCO2 proxy. Were growth-rate dependent
stratigraphic variations inδDK37s signal to appear down a
core, they could not be deconvolved from changes inδDwater.
For example, using the “ocean main sequence”δ18Owater
versus salinity line (δ18Owater≈0.5 S–17, Craig and Gordon,
1965) and assuming a “meteoric” relationship betweenδD

andδ18O (δDwater≈8δ18Owater+10, Craig, 1961), a typical
whole ocean salinity range of 32 to 37 would correspond to
a δDwater range of∼2 to 22‰ (vs. SMOW). Translated into
a δDK37s signal using the mean value ofαK37s−water (0.790)
reported by Schouten et al. (2006),δDK37s measurements
would span from−208‰ to −193‰, a range of∼15‰.
Based on the data of Schouten et al. (2006), an oceano-
graphically reasonable variation in haptophyte growth rate
(∼0.2 and 0.8 day−1, Bidigare et al., 1997) would be asso-

ciated with anαK37s−water range of 0.814 to 0.796. Within
this range, a constantδDwater value of 12‰, the midpoint of
the δDwater range above, would yieldδDK37s values falling
anywhere between−176 and−194‰. This 18‰ range is
greater than the 15‰ range expected for changes in open-
ocean salinity. If one accepts the salinity “amplification” ef-
fect as reported by Schouten et al. (2006), i.e. thatαK37s−water
varies from 0.799 to 0.815 betweenS=32 andS=37, then this
salinity range would yieldδDK37s values between−200 and
−168‰, a 32‰ range. This contrast is larger, but still on
the same order as the∼18‰ variation potentially associated
with growth rate. With the biological effects on fractionation
factors this unconstrained (for a discussion of the further un-
certainties in this sort of reconstruction due to variation in
δDwater vs.S relationships, see Rohling, 2007), it is unlikely
thatδDK37s measurements could provide unequivocal quan-
titative information about absolute changes inδDwaterfor any
oceanographic settings other than those characterized by the
highest salinity contrasts, such as areas of periodic melt wa-
ter discharge or variable river outflow (e.g. Friedman et al.,
1964).

1.2 The premise of alkenoneδD measurements as
a physiological stress proxy

If δDK37s values are to provide an effective proxy for any
paleoreconstruction purpose (salinity or otherwise), it is es-
sential that the effects of variable growth conditions on iso-
topic fractionation be evaluated and constrained. Schouten
et al. (2006) have lain the groundwork, demonstrating that
variation in cell physiology plays a significant role in setting
δDK37s values. Although these effects clearly complicate use
of δDK37s measurements for paleosalinity reconstruction, is
it possible that this physiological complication could be ex-
ploited for paleoceanographic advantage?

Analysis of the molecular composition of alkenones pre-
served in surface sediments off the west coast of South Amer-
ica led Prahl et al. (2006) to suggest that the fossil signatures
are characteristic of stressed, rather than exponentially di-
viding cells. They hypothesized that stress, in this setting, is
imposed by the exposure of cells to a combination of nutrient
depletion (prior to sedimentation) and light deprivation (dur-
ing the export of viable cells). These results echo those of
Conte et al. (1995), who observed the same biochemical cues
in suspended particulate matter from North Atlantic surface
waters. Prahl et al. (2006) suggested that the effects these
stresses have on the alkenone unsaturation index (UK ′

37 ) con-
tribute to the several-degree-Celsius “scatter” in the linear,
global core-top calibration forUK ′

37 versus mean annual SST
(maSST, M̈uller et al., 1998).

If the fossil alkenone record does not strictly reflect the
molecular composition of exponentially dividing cells, then
to what extent might theδD composition of these biomark-
ers also deviate from that reported exclusively, so far, for
cells harvested in the nutrient-replete, exponential growth
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phase? Given the recognized dependence ofαK37s−water on
growth conditions, one may expect thatδDK37s values would
vary systematically from one biogeographical regime to an-
other, as now seems to be the case for deviations ofUK ′

37
measurements from values predicted by the standard calibra-
tion curve (Prahl et al., 2009). If a significant difference in
αK37s−water exists between cells in the exponential and nu-
trient stress-imposed stationary growth phases, deviation of
δDK37s measurements from expected values could provide a
physiological context within whichUK ′

37 records may be in-
terpreted more objectively.

1.3 Analytical concerns

In addition to environmental and physiological effects on ac-
tual isotopic fractionation, the effects of growth conditions
on the molecular fingerprint of alkenones also pose a poten-
tial problem for the interpretation ofδDK37s measurements
from field samples. While the chromatographic peaks of C37
alkenones are generally baseline-resolved when analyzed for
molecular composition by gas chromatography (GC), the
order-of-magnitude increase in sample size necessary for
δD analysis by gas chromatography-pyrolysis-isotope ra-
tio mass-spectrometry (GC-P-IRMS) overloads capillary GC
columns and results in unresolved peaks (D’Andrea et al.,
2007). Consequently, alkenone-specificδD measurements
are now typically reported as an integrated signal (e.g. En-
glebrecht and Sachs, 2005; Schouten et al., 2006). Integrated
values forδDK37s include contributions from di- (K37:2),
tri- (K37:3), and, if present, tetra-unsaturated (K37:4) com-
ponents. This analytical concern is moot if all three com-
pounds are isotopically identical. However, if these com-
pounds are isotopically distinct, changes inUK ′

37 , such as
those that occur during the onset of nutrient-imposed sta-
tionary growth (e.g., Prahl et al., 2003) or when growth
temperature changes, would complicate interpretation of a
measuredδDK37s value. To address this issue, D’Andrea
et al. (2007) developed a manual silver-silica gel chromato-
graphic method to separate alkenones according to their de-
gree of unsaturation, and found K37:3 to be significantly
more deuterium-depleted than K37:2 in samples ofE. hux-
leyi. The fractionation factor calculated for the two com-
pounds (αK37:3−K37:2) was 0.94.

Existence of an isotopic offset between these two com-
pounds has ramifications for down-core analyses. Given that
1) the measuredδD value of a combined K37:3 and K37:2
GC-P-IRMS peak (see Fig. 2) is defined by:

δDK37s = δDK37:3fK37:3 + δDK37:2fK37:2 (2)

wheref is the fraction of K37:3 or K37:2 represented in the
peak, 2) the isotopic contrast between these compounds is
defined by:

αK37:3−K37:2 =
δDK37:3 + 1000

δDK37:2 + 1000
(3)

and 3)UK ′

37 is defined as:

UK ′

37 =
[K37 : 2]

[K37 : 3] + [K37 : 2]
(4)

the isotopic difference between two K37s samples synthe-
sized at two different temperatures, for example, can be cal-
culated using the expression:

δDtot2 − δDtot1 = ((αK37:3−K37:2)(δDK37:2) (5)

+1000(αK37:3−K37:2))
(
UK ′

37 1 − UK ′

37 2

)
+(1000+ δDK37:2)(U

K ′

37 2 − UK ′

37 1)

For measured values ofαK37:3−K37:2 (0.94) andδDK37:2
(−188.1‰) (D’Andrea et al., 2007) and a growth-
temperature difference of 11◦C (the range studied by
Schouten et al., 2006) translated by standard means
(0.034/◦C) into aUK ′

37 difference, an∼+18‰ difference in

δDK37s is calculated. Alternately, a change inUK ′

37 of −0.2,
the magnitude associated with the onset of nutrient-depletion
imposed senescence inE. huxleyigrown at 15◦C (Prahl et al.,
2003), would yield aδDK37s difference of∼+9‰. A differ-
ence of this magnitude is well outside the precision typical
of δDK37s measurements (e.g.∼6‰, Englebrecht and Sachs,
2005) and, thus, would be interpreted as significant. It could
then be construed, when measured down-core, as caused by
a change through time either in 1) growth temperature, 2) the
mean growth phase of cells contributing to alkenone export,
or 3) water composition.

One solution to the issue of unsaturation-specific frac-
tionation is to separate alkenones prior to isotopic analy-
sis and base interpretations onδD values of a single com-
pound. The additional chromatographic steps, however, even
if automated, are labor and time intensive and raise concerns
about fractionation effects associated with incomplete sam-
ple recovery (Smittenburg and Sachs, 2007). Measurement
of δDK37s and calculation of theδD of a single compound
by an isotope mass balance approach (algebraic rearrange-
ment of Eqs. 2, 3, and 4):

δDK37:3,calc =

(
δDK37s −

1000·UK′

37
αK37:3−K37:2

+ 1000· UK ′

37

)
1 − UK ′

37 +
UK′

37
αK37:2−K37:2

(6)

is analytically simpler, but requires a well-constrained, con-
stant value ofαK37:3−K37:2. The data of D’Andrea et
al. (2007) and Schwab and Sachs (2009) potentially support
this premise. Nonetheless, the actual value ofαK37:3−K37:2
remains in question.

1.4 Objectives of this work

The background presented above shows that use ofδDK37sas
an unequivocal salinity proxy is, at best, currently problem-
atic. Even ifαK37s−water has a constant value of 0.790 (the
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mean value reported by Schouten et al., 2006), the current
precision ofδDK37s measurements (±3 to 5‰, 1σ) corre-
sponds to an uncertainty in salinity reconstructions of∼±1.0
to 1.6 units. This assumes the meteoricδ18O/δD relation-
ship and the ocean main sequenceδ18O/S relationship are
both known with zero uncertainty. This hypothetical best-
case scenario poses a serious impediment given the small
salinity variations typically of interest in open-ocean pale-
oceanographic studies (e.g. de Vernal et al., 2000).

However, the physiological factors that may affectδDK37s
values are themselves valid targets for paleoceanographic in-
quiry. Prior work suggests the physiological growth status
of cells contributing to the export of alkenones from the eu-
photic zone plays an important role in fine-tuning the quan-
titative nature of the sedimentaryUK ′

37 record (Conte et al.,
1995; Prahl et al., 2006). However, there is, as of yet, no
defined method for objectively quantifying variation in stress
effects onUK ′

37 values measured down-core. In light of results
from Schouten et al. (2006), compound-specific hydrogen-
isotopic data could provide such a tool, constraining some of
the more significant non-thermal impacts on theUK ′

37 -derived
temperature record.

Two important sets of questions that guided our
laboratory-based experimental study were:

1. Is αK37:3−K37:2 a constant value in cells transitioning
from an exponential to a nutrient-stress imposed station-
ary growth phase?

2. Does a difference in the hydrogen isotopic fractionation
associated with alkenone biosynthesis exist between ex-
ponential and stationary growth phases? If so, what is
the cause of the variation inαK37s−water?

2 Methods

2.1 Algal cultures

Emiliania huxleyi(non-calcifying strain CCMP 1742) was
batch cultured in duplicate isothermally (15◦C) under cool-
white light (∼70µEin/m2 s, 12 h light/12 h dark cycle) in
f/20 media (∼32 salinity). Duplicate cultures from the same
stock of E. huxleyiCCMP 1742 were grown isothermally
(18◦C) under constant, cool-white light (∼80µEin/m2 s)
in enriched Ocean Station PAPA seawater at the Univer-
sity of British Columbia (Canada). This medium contained
∼300µM nitrate, ∼10µM phosphate,∼32 salinity, and
Aquil-standard additions of trace metals with 100µM EDTA
(Maldonado et al., 2006).Gephyrocapsa oceanica(calcify-
ing strain PZ3-1) was batch cultured isothermally at three
different temperatures (17◦, 21◦, and 25◦C) in media (salin-
ity ∼32) equivalent to K/8 with a soil extract addition (https:
//ccmp.bigelow.org/node/81) at Station Biologique Roscoff
(France). In each case, cool-white light was supplied at
∼150µEin/m2 s on a 14 h light/10 h dark cycle.

For all experiments, cell counts were conducted daily to
monitor the progression of growth and establish the average
growth rate (Fig. 1). “Exponential” phase cells were sampled
during the log-linear portion of each growth curve. “Station-
ary” phase cells were sampled after the cessation of cell divi-
sion. Cell sampling was conducted in duplicate for analysis
of the molecular andδD composition of alkenones. Dupli-
cate samples of the culture media were also collected from
the filtrate at each cell harvest for analysis ofδDwaterand nu-
trients. Sampling points for each experiment are identified
on the growth curves shown in Fig. 1.

2.2 Sample preparation for molecular and isotopic
characterization

2.2.1 Alkenone extraction and purification

Total lipids were extracted from the cell samples following
a standard procedure (Prahl et al., 1989), modified for auto-
mated solvent extraction using a Dionex ASE-200. All sam-
ples from theE. huxleyicultures were saponified in ethano-
lic KOH (Christie, 2003) to remove alkenoates. Since the
alkenoate content of theG. oceanicasamples was negligible,
they were not saponified. However, allG. oceanicasamples
were adducted with urea (Christie, 2003) to remove a series
of polysiloxane contaminants which were present and other-
wise would have interfered with the alkenone analysis.

2.2.2 Unsaturation-specific separation

One of the duplicate alkenone samples from each harvest
point of theE. huxleyicultures was separated into di- and
tri-unsaturated fractions using argentation chromatography
(Nikolova-Damyanova, 1992). The tetra-unsaturated C37 ke-
tone (K37:4) was a very minor component (<3% of the total
C37 compounds) in all samples. Initially, the exact protocol
described by D’Andrea et al. (2007) was used, but clean sep-
aration of K37:2 and K37:3 could not be obtained. A much
smaller increase in solvent strength (100% dichloromethane
(DCM) to 10% ethyl acetate (EtOAc) in DCM) than reported
(10 to 30% EtOAc in DCM) was required to begin eluting
the more unsaturated compounds and achieve complete sep-
aration. Consequently, a total volume of solvent 10x greater
than that reported by D’Andrea et al. (2007) had to be run
through the columns.

2.2.3 Cryodistillation of water

Prior to δD analysis using a thermal-conversion elemen-
tal analyzer coupled to an isotope ratio mass spectrometer
(TCEA-IRMS), samples of culture media water were quanti-
tatively cryodistilled in triplicate. This preparative step was
taken to eliminate salt from the water samples and prevent
fouling of the TCEA pyrolysis column. A published method
(West et al., 2006) for quantitatively extracting water from
leaf and soil samples using a vacuum manifold was modified
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for use with whole-water samples. The key modification
was replacement of the straight extraction tubes with simi-
lar ones (14 cm by 1 cm i.d.) containing a bulb (2.5 cm i.d.)
at the closed end. This modification eliminated a problem
with sample processing caused by the buildup of pressure
in the frozen sample when warmed under vacuum and dis-
tilled from one tube to the other. Distilled samples, stored
in crimp-top autosampler vials until analysis, were shown to
be isotopically identical to their undistilled counterparts to
well within the 1.9‰ mean standard deviation of replicate
distillations (see Sect. 2.4.1).

2.3 Molecular characterization by GC-FID

All isolated alkenone fractions were characterized compo-
sitionally and quantified by gas chromatography with flame
ionization detection (GC-FID, Prahl et al., 1989). Cel-
lular alkenone concentrations are reported as values cor-
rected for recovery (typically 80–90%) of hexatriacontan-2-
one (K36:0). K36:0 is a reference standard added to each
sample prior to extraction with the ASE-200. Percent re-
covery for the unsaturation-specific isolates is reported as
percent of each compound (K37:2 or K37:3) relative to the
amount quantified in the total C37 alkenone sample prior to
separation by argentation chromatography.

2.4 Isotopic analysis

δD analysis of C37 alkenones and water was performed us-
ing a ThermoQuest-Finnigan Delta Plus XL isotope ratio
mass spectrometer operated in continuous flow mode. Us-
ing ISODAT software, “H+3 ” correction factors (Sessions et
al., 1999) were determined at the beginning of each day us-
ing eight sequential H2 reference gas injections of increasing
partial pressure. Values ranged between∼3 and∼7 ppm/nA.
All δD values are reported versus Standard Mean Ocean Wa-
ter (SMOW).

2.4.1 δD analysis of water in culture media

Values forδDwater in all distilled samples were determined
using a Thermo-Electron TCEA-IRMS equipped with a
Finnigan-MAT A200S liquid autosampler. The instrument
was configured and operated as specified in the manual for
liquid samples. Each vial was sampled using one “memory
clearing” cleaning step as specified by a procedure from the
Arizona State University Keck Foundation Laboratory for
Environmental Biogeochemistry (http://kfleb.asu.edu), fol-
lowed by three replicate 1µL sample injections. δDwater
values for each sample injection were calculated against the
mean of two H2 reference gas injections made prior to the
elution of the analyte peak in each run. For each batch of
samples analyzed, the reference gas was standardized against
three working reference waters (HOTSW=−2.94‰±0.36;
LROSS=−71.84‰±0.63; WAIS3=−265.93‰±0.43, un-
certainties given as standard errors of the mean, SEM,n=9)
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Fig. 1. Growth curves for batch cultures of(A) E. huxleyi(15◦C
cultures) and(B) G. oceanica. Growth rates (µ, day−1), derived
from linear fits to the exponential portion of each curve, are denoted
on the plots. The “exponential” and “stationary” growth phase time
points when cell and water samples were collected are identified on
each plot by the enlarged symbols.

that had been calibrated using three working reference mate-
rials provided by William Rugh (National Health and Envi-
ronmental Effects Research Laboratory, US-EPA, Corvallis,
OR). The reference materials from the EPA laboratory had,
in turn, been calibrated versus the GISP, SLAP, and SMOW
primary reference materials from National Institute of Stan-
dards and Technology (www.nist.gov). The standard error of
the mean of the working reference materials during the sam-
ple runs (2 vials of each standard×3 injections each) was
0.47‰, and the precision of the measurements (taken as the
mean standard deviation of the reference compounds) was
±2.5‰. The mean standard deviation of 25 different tripli-
cate sample distillations was 1.9‰.

Water samples from theG. oceanicaculture experiments
were lost due to breakage during shipment from France.
Fractionation factors for alkenone samples from these cul-
tures are calculated assuming aδDwater of 0‰. This value
is chosen as an estimate because the medium was prepared
using water from the English Channel with a salinity of 32.
The exact choice of the value is not overly critical to our
assessment of the direction and magnitude of growth-phase
effects, however, as variability inαK37s−water determinations
is driven largely by variability inδDK37s values.δDwaterval-
ues ranging between 2 and−8‰ may be used in the calcu-
lation of αK37s−water without shifting the results outside of a
±0.005 range.
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2.4.2 δD analysis of alkenones

TheδD of the alkenones was analyzed by GC-P-IRMS. Just
prior to analysis, samples were dissolved in a suitable vol-
ume of toluene to ensure that a 2µL GC injection introduced
∼500 ng of the minor C37 component. An exception was
made for theG. oceanicasamples harvested from the 25◦C
batch culture experiment because there was not enough of the
minor component, K37:3, to make this approach practical. In
this case, the dilution volume was chosen to ensure 500 ng in-
jections of the major component, K37:2. Samples, coinjected
with 1µL of an n-alkane working standard (530 ng nC36/µL,
330 ng nC37/µL), were chromatographically separated using
an HP6890 GC equipped with a cool on-column injector and
a SGE BF5 (30 m×0.32 mm i.d., 1.0µm film) column.

The GC was operated at a constant helium carrier gas flow
rate (2.5 mL/min). Compound separations were achieved
by temperature programming (80–270◦C at 10◦C/min, 270–
320◦C at 5◦C/min, 43 min hold at 320◦C). The alumina py-
rolysis reactor (32 cm×0.5 mm i.d.), installed in the Thermo-
Finnigan GC-TC interface, was maintained at 1450◦C. Upon
initial use, the reactor was pre-conditioned (graphitized) by
passing several 1µL injections of isooctane through it. If
necessary, such pre-conditioning was repeated until mea-
sured standard values stabilized. Figure 2 shows an exam-
ple chromatogram from GC-P-IRMS analysis of an alkenone
sample.

Isotopic values for C37 alkenones were calculated ver-
sus the coinjected nC36 and nC37 alkane and C36 ke-
tone (K36:0) reference materials. “Known” values of
these working references were determined by standardiza-
tion through co-injection with “Mixture B”, a 15 com-
pound mixture of n-alkanes obtained from A. Schimmel-
mann (Indiana University). The average of these stan-
dardization analyses performed over 10 months yielded
the following ‘known’ values: nC36=−265.1‰±0.8,
nC37=−217.7‰±0.8, K36:0=−186.5±0.9‰ (uncertainties
reported as SEM,n=25). The standard error of the mean
(SEM) of the working reference materials during the sample
runs (n=18) was 0.9‰, and the precision of the measure-
ments (taken as the mean standard deviation of the reference
compounds) was±3.9‰. The mean standard deviation of all
sets of replicate samples was 2.0‰.

For each day of sample analysis, a linearity correction for
the mass spectrometer was determined by linear regression
of measured versus knownδD values for each n-alkane in a
“Mixture B” standardization run. This correction was then
applied to each sample measurement using the equation:

δDcorrected=
δDuncorrected− b

m
(7)

wherem andb are the slope and intercept, respectively, of the
linear regression. The magnitude of the applied correction
averaged 1.3‰ and never exceeded 2.7‰. In Table 1, allδD

values for alkenones are reported as the mean of two or three
replicate injections of the same sample.

3 Results

Table 1 summarizes the results of the molecular and hydro-
gen isotopic analysis of samples from theE. huxleyiandG.
oceanicabatch culture experiments.

3.1 Molecular characterization

Total C37 alkenone abundance (K37s, pg/cell), alkenone un-
saturation values (UK ′

37 ) and combined C37 as a percentage
of total C37−39 alkenone abundance (%K37) measured in the
E. huxleyisamples grown at 15◦C followed trends expected
for cells transitioning from the exponential to the stationary
phase of growth (Table 1). Cellular K37s increased by a fac-
tor of three upon exposure to nutrient depletion, in keeping
with their purported use as an energy storage product (e.g.
Elgroth et al., 2005). The∼0.1 unit decrease inUK ′

37 ob-
served for the stationary-phase samples compares well with
the shift documented for exposure of this strain to isother-
mal nutrient stress at this growth temperature (Prahl et al.,
2003). Likewise, while %K37 values for the exponential-
phase samples (∼55%) were lower than those previously re-
ported for nutrient-replete samples (∼65%), the∼5% de-
crease observed in the stationary-phase samples is consistent
with the previously-documented impact of nutrient depletion
on this property. The same pattern of relative shifts in the
molecular fingerprint was documented in the early exponen-
tial and late exponential-phase samples harvested from the
grow-out experiment conducted at UBC using the same cul-
ture stock ofE. huxleyi(Table 1).

Results from analysis of theG. oceanicasamples gener-
ally paralleled those forE. huxleyi(Table 1). Cellular con-
centrations of K37s did not increase as significantly, how-
ever, and an increase was only apparent in the 17◦C and 21◦C
experiments. A decrease inUK ′

37 upon the transition of cells
from the exponential to the stationary growth phase was also
seen (−0.05,−0.06,−0.01 units for the 17◦, 21◦, 25◦C treat-
ments, respectively). The magnitude of the decrease, smaller
than that observed forE. huxleyi, was likely due to harvest-
ing the cells at the onset of stationary phase and not at a later
point in time (Fig. 1). The apparent lack of change inUK ′

37 for
cells from the 25◦C experiment may reflect the fact that val-
ues for the alkenone unsaturation index at this growth tem-
perature are very nearly unity, the maximum possible for this
index. Finally, the magnitude of the decrease in %K37 val-
ues from exponential to stationary phase growth also roughly
paralleled the pattern expected forE. huxleyi(Prahl et al.,
2006).
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Table 1. Results from Growth-Phase Experiments withE. huxleyiCCMP 1742 andG. oceanicaPZ3-1.

Sampling Replicate Growth Growth [NO−3 ]+[NO−

2 ] [PO3−

4 ] % Recoveryb Uk’37 %K37 K37s/cell δDK37 ±(SEM) n δDwater ±(SEM) αK37−water
c αK37:3−K37:2

Phase Culture Temperature Rate (µmol/L) (µmol/L) (±0.01) (pg/cell) (‰ vs. SMOW) (‰ vs. SMOW) (n=9) (±0.004) (±0.007)
(◦C) (day−1)

E. huxleyiCCMP 1742 Cultures
Exponential Culture 1 15 0.58 74.4 2.9 68 0.41 55 0.44 −186.4 0.5 3 −8.7 0.6 0.821

Replicatea 0.58 72 0.40 54 0.44
K37:2 89 −171.0 0.5 2 ” ” 0.836
K37:3 72 −184.7 4.5 3 ” ” 0.822 0.983

Reconstructed Total K37 −179.3 2.7 ” ” 0.828

Culture 2 15 0.56 66.2 2.3 76 0.41 55 0.46 −191.0 0.1 2 −9.2 0.9 0.816
Replicatea 0.56 77 0.41 55 0.45

K37:2 91 −178.8 0.2 2 ” ” 0.829
K37:3 67 −190.9 1.2 3 ” ” 0.817 0.985

Reconstructed Total K37 −185.9 0.7 ” ” 0.822

Stationary Culture 1 15 0.3 0.31 59 0.30 52 1.3 −215.3 2.5 2 −7.7 1.1 0.791
Replicatea 75 0.29 50 1.5

K37:2 94 −200.9 2.3 2 ” ” 0.805
K37:3 85 −221.4 2.0 2 ” ” 0.785 0.974

Reconstructed Total K37 −215.5 1.6 ” ” 0.791

Culture 2 15 0.6 0.28 78 0.30 52 1.4 −212.9 1.5 2 −7.6 0.3 0.793
Replicatea 72 0.29 50 1.6

K37:2 91 −198.9 1.1 2 ” ” 0.807
K37:3 86 −222.1 0.2 2 ” ” 0.784 0.971

Reconstructed Total K37 −215.3 0.4 ” ” 0.791

UBC E. huxleyiCCMP 1742 Cultures
Mid-Log A 18 0.61 0.36 64 1.3 −189.8 0.2 2 0.817

B 18 0.62 308 9.7 0.37 64 3.0 −189.9 0.3 2 0.817
Late-Log A 18 0.30 63 4.5 −204.8 2.8 3 0.802

B 18 244 5.8 0.30 62 2.8 −203.0 0.2 2 0.803

G. oceanicaPZ3-1 Cultures
Exponential Culture 1 17 0.62 0.44 55 0.60 −190.9 0.9 2 0.809

Culture 2 21 0.92 0.74 56 0.82 −204.6 0.1 2 0.795
Culture 3 25 0.93 0.99 59 2.0 −229.9 1.4 2 0.770

Stationary Culture 1 17 0.38 48 0.78 −213.2 5.4 2 0.787
Culture 2 21 0.68 41 1.2 −235.5 0.2 2 0.765
Culture 3 25 0.98 53 1.1 −262.6 0.4 2 0.737

a Values measured on samples prior to separation by argentation chromatography.
b Values for total K37s samples are calculated as described in Sect. 2.3. Percent recovery for the K37:2 and K37:3 isolates is specific to the
argentation chromatographic procedure.
c AssumingδDwater=-7.9±2.5‰ for the UBCE. huxleyicultures (average value from previous experiments using the same medium);
assumingδDwater=0±5‰ for G. oceanicasamples due to loss of water samples (see Sect. 2.4.1). Uncertainty forG. oceanicaestimates is
approximately±0.006.

2400

1600

1400

1200

1000

800

600

400

200

0

2600 2800 3000 3200 3400 3600 3800 4000 4200
Time [s]

In
te

ns
ity

 [m
V

]

Ref H2Ref H2

nC36 (std)
-265.1±0.8‰

nC37 (std)
-217.7±0.8‰ K36:0 (std)

-186.5±0.9‰

K37:3 K37:2

K37s

K38:2 e-m

K38:3e-m

m/z=3

m/z=2

Fig. 2. Example chromatogram from compound-specificδD analysis of alkenones by GC-P-IRMS. For total C37 alkenone (K37s) mea-
surements, an isotope ratio was determined by integrating across the unresolved K37:3 and K37:2 peaks (shaded area). “K38:3e-m” and
“K38:2e-m” labels denote peaks comprised of the unresolved ethyl and methyl C38 ketones.
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3.2 Isotopic characterization

TheδDwater for theE. huxleyicultures was essentially invari-
ant between the exponential and stationary sampling points,
averaging−8.3±0.4‰ (Table 1). Uncertainties inδD val-
ues are given as SEMs.δDK37s values measured on unsep-
arated samples ofE. huxleyi from the exponential growth
phase averaged−188.7±0.3‰, yielding anαK37s−water of
0.819±0.003. Note that the uncertainty provided for calcu-
lated values ofα is based on the generally more-conservative
precision estimates (meanσ of standards) provided above for
δDwater, ±2.5‰, andδDK37s, ±3.9‰, rather than the SEMs
associated with individual, low-replication samples. The av-
erageδDK37s values measured in stationary-phase samples
was−214.1±1.4‰, corresponding to an averageαK37s−water
of 0.792±0.003. Figure 3 illustrates the magnitude and con-
sistency of the difference inαK37s−waterbetween exponential
and stationary phase cells for replicate culture experiments.

Isolated K37:2 and K37:3 exhibited similar shifts inδD
composition between the exponential and stationary growth
phase samples. Furthermore, K37:3 was, in all cases, the
more deuterium-depleted of the two compounds. ForE.
huxleyisampled in the exponential growth phase, the mean
δDK37:2 (−174.9±0.3‰) andδDK37:3 (−187.8±2.3‰) val-
ues yielded an averageαK37:3−K37:2 for the two cul-
tures of 0.984±0.005. In the stationary growth phase
samples, greater isotopic fractionation was apparent be-
tween compounds (averageαK37:3−K37:2 for both cultures
of 0.973±0.005) given the mean measurements ofδDK37:2
(−199.9±1.3‰) andδDK37:3 (−221.7±1.0‰). Figure 3 has
been annotated to illustrate the differences in assessed values
of αK37:3−K37:2 for the individual exponential and stationary
growth phase samples.

An isotopic mass balance approach was used to recon-
struct the unseparatedδDK37s value in the four argentation
chromatography experiments (Table 1). This exercise was
possible given measured values ofUK ′

37 , δDK37:2, δDK37:3
and the equation:

δDK37s = δDK37:3(1 − UK ′

37 ) + δDK37:2U
K ′

37 (8)

Reconstructions based on results for both sets of exponential-
phase measurements yielded an average value forαK37s−water
(0.825±0.003) that is similar, but not statistically iden-
tical (two-sided student’s t-testp=0.18), to the average
measured value (0.819±0.003). Reconstructions for both
sets of stationary-phase measurements yielded an average
αK37s−water value (0.791±0.003) which is identical (two-
sidedp=0.77) to the average measured value (0.792±0.003).
Again, these findings are summarized in Fig. 3.

In the E. huxleyibatch culture grow-out experiment con-
ducted at UBC, a comparable shift was seen in the mean
δDK37s value between early exponential (−189.9±0.2‰)
and late exponential (−203.9±1.5‰) growth phase sam-
ples (Table 1). This finding substantiates the idea that there
is indeed a phase-dependant process affecting net alkenone

biosynthetic fractionation in this organism. Furthermore, the
phenomenon is not restricted to this species of alkenone-
producing haptophyte. A similar trend in deuterium de-
pletion is apparent inδDK37s measurements forG. ocean-
ica when the exponential and stationary growth phase sam-
ples are compared. This feature was characteristic of re-
sults from all three temperature treatments. The decrease in
δDK37s between growth phases yielded shifts in estimated
(see Sect. 2.4.1)αK37−water from 0.809 to 0.787, 0.795 to
0.765, and 0.770 to 0.737 (±∼0.006) for the 17◦C, 21◦C,
and 25◦C cultures, respectively. A scatter plot of these data
suggests the decline inαK37s−water with increasing temper-
ature is systematic (Fig. 4). Notably, results obtained from
the experiments withE. huxleyiappear to lie along the trends
defined by theG. oceanicasamples.

4 Discussion

4.1 Unsaturation-specific fractionation

Argentation chromatography confirms the original finding
of D’Andrea et al. (2007) that a significant isotopic offset
exists between K37:3 and K37:2, with the tri-unsaturated
compound being the more depleted in deuterium. In addi-
tion, an initial view of the results suggest that the fractiona-
tion between the two compounds (αK37:3−K37:2) is greater in
the stationary (∼0.973) than in exponential (∼0.984) growth
phase (Fig. 3). While both compounds are more deuterium-
depleted in the stationary growth phase, the shift appears
greater for K37:3. The apparent difference in the degree
of fractionation between these two compounds with growth
phase, however, may be an analytical artifact.

The likelihood of this artifact is evidenced by Fig. 3.
Despite possible statistical similarity of the “reconstructed”
αK37s−water values derived from the separated, exponential
growth phase samples and their unseparated counterparts
(p=0.18, Sect. 3.2), results for the individual compounds do
not bracket the corresponding total K37s values as would be
required to satisfy isotopic mass-balance requirements. Re-
sults from the stationary growth phase samples, however,
do. Closer examination of results of the argentation chro-
matography separations suggests a cause for the discrepancy.
The isotopic difference between both K37:2 and K37:3 and
their associated, unseparated K37s samples were calculated
(1δD) to normalize against the effect of changing over-
all isotopic composition with growth phase. The1δD re-
sults are plotted in Fig. 5 versus percent recovery for each
compound from the argentation chromatography procedure.
Given that unseparatedδDK37s measurements are comprised
only of contributions from K37:2 and K37:3, isotopic mass
balance requires that these two compounds plot on opposite
sides of the zero-difference line. If the tight vertical cluster-
ing of all 1δDK37:2 values (Fig. 5) indicates that these data
are reliable, then the1δDK37:3 values for the exponential
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growth phase samples should plot below zero. The appar-
ent deviation of only one compound may reflect an isotopic
fractionation effect imparted by low recovery from the ar-
gentation chromatography procedure (Schwab and Sachs,
2009). Regardless of the cause, however, the observation
justifies a revised analysis of theδDK37:3 results from both
exponential-phase samples.

In our revised analysis, allδDK37:2 values are assumed to
be robust, based on the consistent1δD values and uniformly
high recovery (∼90%, Fig. 5). Given this condition, the
δDK37:3 value required to properly close the isotopic mass
balance for the two experiments where K37:3 displayed con-
spicuously low recovery (∼70%) can be calculated using an
algebraic rearrangement of Eq. (8):

δDK37:3,calc =
δDK37s − δDK37:2U

K ′

37

1 − UK ′

37

(9)

The calculatedδDK37:3 values average−198.1±0.5‰
(Fig. 5). The averageαK37:3−K37:2 value obtained for the
exponential growth phase samples when these “calculated”
δDK37:3 values are used (0.972±0.005) is statistically identi-
cal (two-sidedp=0.91) to that assessed for stationary growth
phase samples (0.973±0.005). The weakness of this re-
construction lies in the assumption that theδDK37:2 values
are correct. While the chromatographic technique employed
was inherently different (normal-phase HPLC rather than ar-
gentation), Schwab and Sachs (2009) propose a threshold
of ∼92% recovery of individual alkenones to ensure that
no isotopic alteration occurred, a value slightly higher than
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those achieved in these experiments. Thus, while the issue
of growth phase-dependence on the differential fractionation
of K37:2 and K37:3 appears potentially resolved, the follow-
ing discussion should be considered with these limitations in
mind.

While the direction of the unsaturation-specific offset seen
here agrees with the findings of D’Andrea et al. (2007), the
magnitude of the fractionation effect does not. We find an av-
erageαK37:3−K37:2 value of 0.973±0.005 while their result,
0.94, is significantly lower (albeit without mass-balance con-
straints). It is possible that this difference is due to changes
in αK37:3−K37:2 with growth conditions. However, D’Andrea
et al. (2007) observed the sameα value between K37:4 and
K37:3 in two polar lacustrine sediments as between K37:3
and K37:2 in theirE. huxleyilaboratory culture. This find-
ing, coupled with the potential consistency ofαK37:3−K37:2
across extremes in growth conditions documented here, sug-
gests thatαK37:n−K37:(n−1) may be a constant value indepen-
dent of the species of alkenone producer or its physiological
state.

Schwab and Sachs (2009) more recently reported values
of αKn:3−Kn:2 identical to ours (∼0.97) for both C37 and
C38 alkenones isolated from Chesapeake Bay sediment and
suspended-particulate samples. The lack of C38 methyl com-
ponents in the alkenone signature preserved in their sediment
samples, however, is inconsistent with production byE. hux-
leyi (Volkman et al., 1980). The GC-illustrated molecular fin-
gerprint documented in their publication is more indicative of
alkenone-producing haptophytes such asChrysotila lamel-
lose(Rontani et al., 2004). This finding also suggests that an

αKn:3−Kn:2 of ∼0.97 may be applicable to various species of
alkenone producers as well as across disparate growth condi-
tions.

4.2 Growth-phase dependence

The net fractionation between total C37 alkenones and wa-
ter differs between exponential- and stationary-phase cells
(Fig. 3). This finding cannot solely reflect theUK ′

37 change
that occurs at the onset of senescence, as both the K37:2
and K37:3 isolates exhibit an increase in hydrogen isotopic
fractionation relative to water in the stationary growth phase
samples (Fig. 3). The following exercise demonstrates that
the quantitative effect of the change in relative compound
abundance is minor. The average exponential-phase values
of δDK37:2 (−174.9‰) andδDK37:3 (−198.1‰, “calculated”
value), would correspond, given aUK ′

37 value of 0.4 (ob-
served here for exponential-phase samples) and Eq. (8), to a
δDK37s value of−189‰ and anαK37−waterof ∼0.818. Were
UK ′

37 shifted to 0.3 (observed here for stationary-phase sam-
ples), these same compositions would yield aδDK37s value
of −191‰ and anαK37−waterof 0.816. This pair of hypothet-
ical exponential- and stationary-phase samples would have
anαK37−water difference of 0.003. This difference is within
the uncertainty of our measurements and is much smaller
than the 0.027 difference with growth phase that we observe
for actual K37s samples. A real change in net biosynthetic
fractionation has taken place, independent of the changing
relative contributions of K37:3 and K37:2 to the “weighted
average”δDK37s measurements.
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A change in hydrogen isotopic composition with growth
status may be expected, due to the changes in the routing
of D-depleted NADPH+ that occur (Schmidt et al., 2003).
For example, Chikaraishi et al. (2004, 2009) showed iso-
prenoid synthetic products in a higher plant to be signifi-
cantly more D-depleted than acetogenic lipids. In a simpli-
fied model where NADPH+ formation remains constant, but
this reducing power is shunted solely into acetogenic lipids
(e.g. alkenones) and ceases being used to produce isoprenoid
structural components (e.g. membrane lipids, phytol), mass
balance would demand that the resulting acetogenic lipids
be more depleted. Chemical restructurings such as this were
seen by Zhang and Sachs (2009) when comparing the fatty
acid and sterol content of nitrate-replete and nitrate-limited
exponential-stage marine diatoms. Rather than a D-depletion
of fatty acids, however, they observed approximately no
change or a slight enrichment.

While this seems contradictory to our data, consider the
hypothetical effect of a decrease or cessation of cell divi-
sion on the intracellular water pool. In photoautotrophs, this
pool is D-enriched due to NADPH+ synthesis (Schmidt et
al., 2003). If, as has been proposed for alkenone producers
(Eltgroth et al., 2005), lipid synthesis serves as an important
energy-management mechanism in the face of nutrient ex-
haustion, as opposed than the down-regulation of photosys-
tem capacity, NADPH+ production could still occur at a sig-
nificant rate despite a halt to division. If the net incorporation
of extracellular water to form new cytoplasm were stopped,
one might then expect the intracellular water to become pro-
gressively more D-depleted as lipid synthesis continued.

Thus, one could imagine two potential processes, related
to growth status, that would wield opposing effects on the
δD of acetogenic lipids – a decrease in the synthesis of
D-depleted isoprenoid products, which, as discussed above,
could drive the acetogenic lipids to more negativeδD values,
and increased isolation of the intracellular water pool, which
would drive them to more positive values. The fact, then, that
Zhang and Sachs (2009) were observing A) different species
of phytoplankton and B) the difference between two differ-
ent exponential growth rates with different rate-limiters, as
opposed to exponential and fully stationary growth as was
studied here, means that their findings are not necessarily in-
consistent with our own. Further research, particularly direct
observations of the isotopic composition of intracellular wa-
ter in photoautotrophs, is warranted.

Results from analysis of theG. oceanicasamples show
a similar offset between exponential- and stationary-phase
samples (Fig. 4), indicating that the presence and approxi-
mate magnitude of the growth-phase effect onαK37s−water is
not species-specific. The shift in estimatedαK37s−water with
growth phase forG. oceanicaalso appears to be independent
of the decrease inUK ′

37 which marks the onset of nutrient-
imposed stationary-phase growth at some temperatures. At
25◦C, there is only a minor decrease inUK ′

37 associated with
this transition in cell physiology (Fig. 4), but a large shift in

αK37s−water is still apparent. This observation further demon-
strates there is true growth phase-dependence inαK37s−water,
independent of the changing proportion of K37:3 and K37:2.
Although not statistically verifiable given our limited data
set, the apparent ’stress‘ contours in the estimatedαK37−water
versus growth-temperature data from theG. oceanicasam-
ples appear to extrapolate smoothly to the data from theE.
huxleyi cultures. This observation suggests that both the
growth-phase offset in isotopic fractionation and the abso-
lute fractionation at each phase may be general to different
species of alkenone-producing haptophytes (Fig. 4).

The apparent trend for stationary-phaseG. oceanicamea-
surements, which were obtained from cells collected at the
onset of senescence, extrapolates to a position arguably
above the stationary-phase data forE. huxleyi. The lat-
ter samples were harvested several days after the onset of
nutrient-limited stationary-phase growth (Fig. 1). Addition-
ally, the G. oceanicastationary-phase data interpolates to
a point slightly below the late-exponential points from the
UBC E. huxleyicultures, which, based on previous mea-
sures of per-cell nitrogen content and assuming Redfield sto-
ichiometry, had approximately one doubling worth of phos-
phate remaining in the culture medium at the time of harvest.
This finding suggests thatαK37s−water may respond in a con-
tinuous manner to the transition from one growth phase to
another, and thus could provide a way to estimate the magni-
tude of stress. More work is needed in this area.

The apparent variation inαK37s−water with growth temper-
ature also cannot be due to changes inUK ′

37 , as increased
temperature leads to decreased relative abundance of K37:3,
the more deuterium-depleted of the component compounds,
which would increaseδDK37s. An increase inδDK37s would,
in turn, increase the value ofαK37s−water, a trend opposite to
the observation illustrated in Fig. 4. Our finding is in conflict
with that of Schouten et al. (2006), who concluded that there
is no temperature dependence inαK37s−water. Additionally,
they reported consistently smallerαK37s−water values forG.
oceanicathan for E. huxleyiwhen grown isothermally un-
der a range of other environmental conditions. This result
conflicts with the trend inferred from our yet-limited data set
for these two organisms (Fig. 4). Zhang and Sachs (2009),
however, did observe an increase in D/H fractionation with
temperature expressed in C16 fatty acids produced by two
species of freshwater green algae, a result consistent with
ours. A more thorough side-by-side study ofG. oceanica
andE. huxleyiis now warranted to test the veracity of these
apparent trends with nutrient stress and temperature.

4.3 Implications for paleoceanographic research

Finding a value ofαK37:3−K37:2 significantly less than unity
raises a valid practical concern for any potential paleoceano-
graphic application involvingδDK37s measurements. Our re-
sults, combined with those of others (D’Andrea et al., 2007;
Schwab and Sachs, 2009), confirm that a significant isotopic
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offset between K37:3 and K37:2 does exist. For quantita-
tive interpretations of paleoceanographic conditions, then,
the impacts of changingUK ′

37 must be taken into account. It is
not currently practical to separate every sample and base in-
terpretations onδD analysis of pure, single compounds, both
because it is time and labor intensive and because incomplete
yields compromise results. Our data currently indicates that
αK37:3−K37:2 may be a constant, in which case acceptable
δDK37:n values can be derived fromδDK37s andUK ′

37 data.
Although yield effects may compromise some of our data,
we suggest thatαK37:3−K37:2 has a constant value of∼0.97,
consistent with the results of Schwab and Sachs (2009).

Variation in the hydrogen isotopic fractionation in
alkenones relative to water, associated with nutrient stress-
induced changes in growth phase, however, limits the use
of δDK37s as a paleoproxy for seawater isotopic composi-
tion. Surface sedimentδDK37s and overlyingδDwater data
from the Scotian Margin (Englebrecht and Sachs, 2005) are
consistent with anαK37−water, of ∼0.79, the value our data
(Fig. 4) predicts for stationary-phase cells grown at temper-
atures<20◦C (modern maSST≈8◦C, World Ocean Atlas
2005). This field observation strengthens the argument that
the alkenones preserved in sediments can reflect stressed or-
ganisms (Prahl et al., 2006). It is unknown to what degree,
temporally or spatially, this condition applies to the geo-
chemical record. Recent evidence suggests that the climati-
cally significant statistical uncertainty inUK ′

37 maSST recon-
structions (i.e.±1.4◦C, Herbert, 2003) displays a significant
degree of biogeographical coherence and, in some regions,
may reflect the impact of significant non-thermal physiolog-
ical effects (Prahl et al., 2009).δDK37s measurements, then,
could help to identify and quantify stress effects onUK ′

37 pa-
leotemperature estimates.

In open ocean settings, changes inδDwater would have
little impact onδDK37s (see Sect. 1.1) relative to the vari-
ability that the effects of nutrient stress appear to impose on
αK37s−water (Fig. 4). Thus,δDK37s measurements could in-
dicate whether changes in the nutrient regime, and the asso-
ciated changes inUK ′

37 imparted by variable nutrient stress,
were a cause for time-variable discrepancies in different pa-
leotemperature proxies, such as that described by Mix (2006)
for Mg/Ca andUK ′

37 in the eastern tropical Pacific. Addition-
ally, if αK37s−water indeed responds in a continuous rather
than a stepwise manner to stress (Sect. 4.2), thenδDK37s
could be used to correct, at least semi-quantitatively, for
nutrient-stress biasing ofUK ′

37 temperature records by defin-

ing a continuum of uniqueUK ′

37 vs. temperature relationships
for contours of constant stress. To apply a calibration of
this sort down-core, estimates of the isotopic composition of
the surface water would be necessary in order to calculate
αK37−water. δDwater estimates could be derived, potentially,
from δ18O measurements of planktonic-foraminiferal calcite
and the initialUK ′

37 temperature estimate. The effects of tem-
perature proxy biasing of the scale we are discussing (∼1◦C)

on values ofδDwater reconstructed fromδ18Ocalcite are small
(∼3‰) relative to the changes we see between growth phases
(∼20‰). Thus, an approximation based on the initial SST
estimate may be all that is required. This calibration “sur-
face” (UK ′

37 vs. temperature vs.αK37−water), once adequately
defined with considerably more data, could have the poten-
tial to collapse much of the scatter in environmental data into
real variation in a third dimension.

The relationship betweenαK37s−water, UK ′

37 , and temper-
ature needs to be thoroughly evaluated by conducting more
batch culture experiments, together with field testing in mod-
ern oceanographic settings, before the type of paleoproxy ap-
proach just discussed could be fruitfully realized. Knowl-
edge gained from further study of stress-dependent behavior
of αK37s−water in alkenone-producing haptophytes could lend
valuable insight into ambiguous paleotemperature data sets.
For this reason, it would seem a most worthwhile investment
of future research effort.

5 Conclusions

Results from our batch culture experiments have shown:

1. K37:3 synthesized byE. huxleyi is fractionated, rela-
tive to the hydrogen isotopic composition of water in
the growth medium, to a higher degree than K37:2.
This difference appears constant across growth phases
and, by comparison with the literature, between dif-
ferent species of alkenone-producers. We observe an
αK37:3−K37:2 value of∼0.97. This value can be used,
along with UK ′

37 data and an assumption of isotopic
mass balance, to estimate componentδD values. This
approach would alleviate the need to perform time-
consuming, analytically difficult, and potentially yield-
compromised chromatographic separations on every
sample.

2. Values ofαK37s−water in both E. huxleyiandG. ocean-
ica decrease when cells shift from the exponential to the
nutrient-imposed stationary growth phase. This effect
is not explained by growth phase-dependent changes in
UK ′

37 values altering the isotopic mass balance of the
two component compounds. While biosynthetic mecha-
nisms for this effect involving NADPH+ utilization can
be suggested, our incomplete understanding of alkenone
biochemistry means that further investigation is clearly
warranted.

These two conclusions suggest thatδD measurements of sed-
imentary alkenones may have utility as an indicator of stress
impacts on the primary temperature signal encoded inUK ′

37
values. Further development and future application of this
measure as a stress index may help to improve the inter-
pretation ofUK ′

37 temperature records and resolve discrepan-
cies between proxies that are currently problematic for pale-
oceanographic/paleoclimatic research.
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