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1. Samples 
1.1 Sample details 
Samples were collected from the Bermuda Atlantic Time-series Study (BATS) site (approximate 
5 nautical mile radius around 31° 40′N, 64° 10′ W), see details in Table S2.  These samples were 
taken during monthly time series cruises, in addition to the large sample and data collection that 
is routine at BATS (http://bats.bios.edu/), one of the best-characterized regions of the oceans 
(31). Three samples were selected for analysis, each from one of three different seasons over a 
period of 5 months: Autumn (November 2008), Winter (February 2009) and Spring (April 2009). 
All samples were collected from 60m depth to ensure that they were taken from within the mixed 
layer. 
 
Samples for single cell sorting were collected as raw seawater (2x1mL per sample) with glycerol 
added to a concentration of 10% as a cryoprotectant, flash frozen in liquid nitrogen and stored at 
-80°C. 
 
1.2 Seasonal environmental changes at BATS 
Seasonal profiles of light, temperature, and nitrogen at BATS, averaged over several years, are 
shown in Fig. S7.  
 
Prochlorococcus, Synechococcus and pico-eukaryote cell counts over the 2008-2009 seasonal 
cycle, determined by flow cytometry, are described in Fig. S8. The estimated abundance of total 

http://bats.bios.edu/
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Prochlorococcus cells in the three samples used for single cell sorting, determined by flow 
cytometry (mean±SE cells/mL), is listed in Table S2. 
 
1.3 Ecotype abundance measured by qPCR 
Prochlorococcus ecotypes are traditionally defined by their ITS sequences and their abundance 
in samples can be estimated by qPCR (17). Ocean water samples were collected in 2008-2009 
using a Niskin rosette at 12 depths at BATS (1, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 
200 m) and processed as previously described by Zinser et al. (32).  The samples were analyzed 
on a Roche Light Cycler 480 using culture based standards and the same PCR conditions as 
previously described in Malmstrom et al (17). Abundances that fell below the lowest value of the 
standard curve were set to the theoretical detection limit of 0.65 cells/mL. See Fig. S9. 
 
2. Single cell Sequencing 
2.1 Construction of single amplified genome (SAG) libraries. 
Single cell sorting and whole genome amplification were performed at the Bigelow Laboratory 
Single Cell Genomics Center (https://scgc.bigelow.org). Prior to cell sorting, the cryopreserved 
samples were diluted 5x with filter-sterilized and UV-treated Sargasso Sea water and then pre-
screened through a 70 µm mesh-size cell strainer (BD). Cell sorting was performed with a 
MoFlo™ (Beckman Coulter) flow cytometer using a 488 nm argon laser for excitation, a 70 µm 
nozzle orifice and a CyClone™ robotic arm for droplet deposition into microplates. The 
cytometer was triggered on side scatter. The “purify 1 drop” mode was used for maximal sort 
purity, which ensures the absence of non-target particles within the target cell drop and the drops 
immediately surrounding the cell. Prochlorococcus cells were separated from other particles 
based on autofluorescence and light side scatter (proxy to particle size). Target cells were 
deposited into 384-well plates containing 600 nL per well of 1x TE buffer and then stored at -
80ºC until further processing. Of the 384 wells, 315 were dedicated for single cells, 66 were used 
as negative controls (no droplet deposited) and three received 10 cells each (positive controls). 
Cells from each sample were deposited into eight 384-well plates: four of them kept as backup 
and four were used for whole genome amplification as described below. 
 
Cells were lysed and their DNA denatured using cold KOH (33). Genomic DNA from the lysed 
cells was amplified using multiple displacement amplification (MDA) (33, 34) in 10 uL final 
volume. The MDA reactions contained 2 U/µL Repliphi polymerase (Epicentre), 1x reaction 
buffer (Epicentre), 0.4 mM each dNTP (Epicentre), 2 mM DTT (Epicentre), 50 mM random 
hexamers with the two 3ʹ-terminal nucleotide bonds phosphorothioated (IDT) and 1 µM SYTO-9 
(Invitrogen) (all final concentrations). The MDA reactions were incubated at 30°C for 12-16 h, 
then inactivated by a 15 min incubation at 65°C. Amplified genomic DNA was stored at -80°C 
until further processing. We refer to the MDA products originating from individual cells as 
single amplified genomes (SAGs) (Fig. S10). 
  
Prior to cell sorting, the instrument and the workspace were decontaminated for DNA as 
previously described (35). High molecular weight DNA contaminants were cross-linked in all 
MDA reagents (36). Cell sorting and MDA setup were performed in a HEPA-filtered 
environment. As a quality control, the kinetics of all MDA reactions were monitored by 
measuring the SYTO-9 fluorescence using FLUOstar Omega (BMG). The critical point (Cp) was 
determined for each MDA reaction as the time required to produce half of the maximal 

https://scgc.bigelow.org/
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fluorescence. The Cp is inversely correlated to the amount of DNA template (37). The Cp values 
were significantly lower in 1-cell wells compared to 0-cell wells in all microplates (p<0.001; 
Wilcoxon Two Sample Test). Our previous studies and other recent publications using our single 
cell sequencing technique demonstrate the reliability of our methodology with insignificant 
levels of DNA contamination (36, 38-42). 
 
2.2 ITS-rRNA screening and sequencing 
ITS screen 
Amplified genomic DNA was diluted 10x in UV-treated 0.2mm filtered H2O and qPCR screened 
using primers (ITS-F: 5’-CCGAAGTCGTTACTYYAACCC-3’, ITS-R: 5’-
TCATCGCCTCTGTGTGCC-3’) targeting the Prochlorococcus intergenic transcribed spacer 
(ITS) (11). The reaction ran using a LightCycler II 480 (Roche) and underwent 30 cycles of 
95°C for 15 seconds, 55°C for 30 seconds, 72° for 45 seconds, followed by an extension at 72°C 
for 5 minutes and a cooling to 37°C (11). Each reaction contained 1.0 Units TaqB (Enzymatics), 
2.0 mL diluted DNA, 0.25mM each dNTP (NEB),  0.5mM each primer, 1x buffer (12mM Tris-
HCl pH 8.3, 50 mM KCl, 8 mM MgCl2, 150mM trehalose, 0.2% (v/v) Tween20, 0.2 mg/ml non-
acetylated BSA, 0.139X SYBR Green). Reactions were prepared using a Bio-Tek Precision 2000 
Liquid Handler. 
 
Sequencing of ITS product 
Selection for sequencing was based on the kinetics from the MDA reaction; only samples which 
likely amplified and were confirmed as Prochlorococcus through the PCR screen were sent for 
Sanger sequencing of the ITS product. 15mL of each product were sent to MCLab 
(www.mclab.com) with 5mM primer (ITS-F) for purification and sequencing. 
 
Second round MDA 
Based off of the resulting ITS-sequences, 96 samples were selected to undergo a second MDA 
reaction in order to produce enough DNA to construct sequencing libraries. Each reaction 
(performed in duplicate) contained 0.63mL DNA from the first MDA reaction, 250 Units 
RepliPHI Phi29 DNA polymerase (Epicentre), RepliPHI Phi29 1X Reaction Buffer (40mM Tris-
HCl (pH 7.5), 50mM KCl, 10mM MgCl2, 5mM (NH4)2SO4, 4mM DTT), 4mM DTT, 1mM each 
dNTP, and 50mM phosphorothioate-protected random hexamers (IDT). The reactions were 
incubated at 30°C for 12hours, then heat inactivated at 80°C for 10 minutes in a BIO-RAD 
C1000 Thermal Cycler (11).  
 
Purification of second MDA DNA 
DNA resulting from the second MDA was purified using Qiagen’s QIAamp DNA Mini Kit 
according to the manufacturer’s protocol, “Purification of REPLI-g amplified DNA.”  DNA 
yields were measured using a NanoDrop ND-1000 Spectrophotometer, and DNA from each 
duplicate reaction was combined in equal parts to help eliminate any bias during MDA (11). 
 
Preparation of sequencing libraries 
Illumina libraries were generated based on a protocol described in (43) using at least 2mg of 
purified, second round MDA product.  50mL of this DNA was sheared using 18 cycles of 
alternating 30 seconds ultrasonic bursts and 30 seconds pauses in a 4°C water bath , with 

http://www.mclab.com/
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instrument power set to high (Bioruptor UCD-200, Diagenode). The sheared DNA was repaired 
at room temperature for 30 minutes using an Enzymatics End-Repair Mix.   
DNA fragments were size selected with double solid phase reversible immobilization (dSPRI) 
(43) using Agencourt AMPure XP SPRI magnetic beads. In the first SPRI selection, 46.1 mL of 
AMPure XP beads were mixed with 50mL of DNA and incubated at room temperature for 5 
minutes in a 96-well plate.  The 96-well plate was placed in a magnetic holder (DynaMag-96 
Side, Invitrogen), and 100mL of the supernatant was transferred to a new 96-well plate; the 
magnetic beads, which are bound to large fragments of DNA, are discarded.  Then, 15mL of 
fresh AMPure XP beads were mixed with the supernatant and incubated at room temperature for 
5 minutes.  The plate was placed back in the magnetic holder, and the supernatant was discarded, 
with DNA of the desired length bound to the magnetic beads.  The beads were washed twice 
with 150mL 70% ethanol and allowed to dry.  The DNA was eluted by adding and mixing 20mL 
H2O to re-suspend the magnetic beads; the mixture was incubated at room temperature for 2 
minutes, then placed in the magnetic holder, where 18mL of the supernatant was recovered.  This 
shearing and dSPRI yielded DNA fragments of approximately 420 bp (43). 
 
Blunt-end DNA fragments were ligated to two distinct adapters (See Table S3); the DNA was 
mixed with a 5-fold molecular excess for each oligonucleotide adapter and ligated using 
Enzymatics Rapid Ligation kit at room temperature for 5 minutes.  The newly ligated DNA was 
purified via SPRI selection using AMPure XP magnetic beads at a DNA/bead ratio of 0.8. 
 
Nick translation of the DNA was performed using 5.2 units Enzymatics Manta 1.0 DNA 
Polymerase (exo-), 20mM Tris-HCl, 10 mM (NH4)2SO4, 10mM KCl, 2 mM MgSO4, 0.1% 
Triton X-100, 2.6 mg/ml BSA, 0.2mM each dNTP for 25 minutes at 65°C.  DNA was purified 
via SPRI selection at a DNA/bead ratio of 0.8. 
 
To complete the Illumina adaptor for sequencing, to add sequencing barcodes for multiplexing, 
and to select fragments with one of each adaptor from the blunt ligation, the DNA fragments 
were PCR-amplified using KAPA SYBR FAST qPCR Kit; the reaction consisted of 1X KAPA 
SYBR FAST qPCR Master Mix Universal, and 0.5mM each primer (see Table S3 for 
oligonucleotides).  The reactions were monitored in real time with a Bio-Rad CFX96, and 
underwent an initial denaturation at 95°C for 1 minute 30 seconds, then repeated cycles of 95°C 
for 3 seconds, 65°C for 20 seconds, and 72°C for 1 second.  When the reactions reached late 
logarithmic amplification phase, they went through a final extension of 72°C for 1 minute.  The 
reverse primer for each reaction contains a unique 6-nucleotide sequence used to barcode the 
libraries (Table S3).  Libraries were purified using a SPRI selection with a DNA/bead ratio of 
0.7. 
The libraries were quantified using a BioAnalyzer (Agilent) and qPCR to determine library 
length and concentration. 
 
3. ITS-rRNA population composition analysis 
3.1 Composition of ITS-defined populations 
The first step of our analysis (Fig. S10) used flow cytometry to identify and sort 
Prochlorococcus cells from water samples, using a gate that aimed to capture the whole 
Prochlorococcus population. These cells were sorted individually into separate wells, their DNA 
was MDA amplified, and the ITS region of their genomes was PCR amplified and sequenced. 
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These steps did not involve any selection thus the set of hundreds of ITS sequences is an 
unbiased representation of the population composition (w.r.t. ITS) – that spans the known 
ribotype diversity of Prochlorococcus (Fig 1B,C ). We excluded from the heatmaps in Fig. 1 
cells belonging to Low-Light adapted ecotypes of Prochlorococcus (representing only 6%-13% 
of the total population in the samples) because their ITS sequences are much longer (800-1000bp 
compared to 500-600bp for High-light ecotypes) and their exclusion made the multiple 
alignment much more informative. Therefore, apart from the exclusion of this small fraction of 
Low-Light-adapted cells (or more precisely ‘long ITS’ cells), we have an unbiased 
representation of the population. 
 
From a total of 1596 single cell ITS-rRNA sequences (440 sequences from the autumn sample, 
519 from the winter sample and 637 from the spring sample) 1381 ITS sequences remained after 
the removal of cells belonging to the Low-Light adapted ITS sequences (with long ITS 
sequences), and the removal of partial ITS sequences. Apart from the excluded cells, these 1381 
sequences quantitatively represent the population composition of all small-genome 
Prochlorococcus cells in the samples. The number of sequences per sample was 399, 436 and 
546 sequences of the autumn, winter and spring samples respectively. Average ITS sequence 
length was 550±27 bp (mean±SD) .  
 
Sequences were multi-aligned by mafft (44) (http://mafft.cbrc.jp/alignment/software/), using the 
following command line flags: ‘mafft --auto --ep 0.123’.  
 
The ITS trees presented in Fig. 1 were generated by Matlab with ‘p-distance’ and ‘average’ 
linkage. Cultured cells whose ITS position is marked in the heatmaps of Fig. 1C (main text) as 
(*), ordered from top to bottom of each heatmap, are: NATL2A, NATL1A, MIT9515, MED4, 
MIT9107, MIT9302, GP2, MIT9321, MIT9201, MIT9215, MIT9312, AS9601, SB, MIT9301, 
MIT9314. 
 
The 96 ITS sequences in Fig 2A were multi-aligned by Matlab with ‘multialign(96-ITS, 
'terminalGapAdjust', true)’. 
 
3.2 Relative abundance of ITS-defined clusters within samples  
Traditional ecotype abundance as estimated by single cell ITS sequences as well as by qPCR is 
summarized in Table S4. Relative abundances of the largest ITS clusters, as depicted from single 
cell data is summarized in Table S5. Relative abundances of the cN2 C1-C5 clades as depicted 
from single cell data is summarized in Table S6. To assess the standard error values presented in 
Tables S5 and S6, the relative abundance was calculated for each of the four 384-well plates 
(cells from each seasonal sample were flow-sorted into four 384-well plates; we treated each one 
of the four plates as a sample replication) and then bootstrapped using 1,000 resampling with 
repetitions.   
 
3.3 Community comparisons between samples  
Two standard methods for community comparisons were used to ask whether the 
Prochlorococcus population structure, based on ITS-rRNA sequences, differed between seasonal 
samples: 
 

http://mafft.cbrc.jp/alignment/software/
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1) Libshuff (http://whitman.myweb.uga.edu/libshuff.html) using cutoff=0.01.  
2) FastUniFrac (45) (http://bmf2.colorado.edu/fastunifrac/). 

 
Pairwise comparisons of samples, by both methods, indicated the populations of any two of the 
three samples are significantly different (pairwise comparisons, P<0.001). 
 
4. Sequencing and assemblies of single cell genomes 
4.1 Choosing single cells for whole genome sequencing 
96 single cell partial genomes were sequenced: 90 cells (30 per sample) from the cN2 ‘nearly 
identical’ ITS-cluster, cN2 (Fig 1C, Fig 2) , three cells (one per sample)  from cN1 and three 
cells (one per sample) from the c9301 ITS-cluster, as summarized in Table S7. For each time of 
year, cells were randomly selected from within the major ITS-ribotypes  (>99% similar) within 
cluster cN2 (C1-C5) for whole genome sequencing, as well as one cell from each of the other 
two clusters (c9301-C8 and cN1-C9). Note that the relative number of cells that were selected for 
whole genome sequencing, per clade, does not represent their relative abundance. 
 
4.2 Whole genome sequencing 
The single cell genomes were sequenced on an Illumina GAIIx with paired-end reads of length 
200bp (forward and reverse). Sequencing was done at the BioMicroCenter at MIT 
(http://openwetware.org/wiki/BioMicroCenter). 
 
4.3 De novo assembly of single cell genomes 
De novo assembly was done by clc-assembly-cell-3.2 (CLCbio, http://www.clcbio.com/). Phred 
quality score of Q=20 was used as a threshold (Base call accuracy of 99%) of quality. Reads 
were considered only if at least 20% of the read was above threshold (CLCbio program 
“quality_trim” was used with the command line flags: “-c 20 –l 0.2”). Paired-end reads were 
assembled assuming insert length is between 150bp and 1000bp. Minimal Contig size was set to 
200bp (CLCbio program “clc_novo_assemble” was used with the command line flags: “-q -p fb 
ss 150 1000”. Assembly size statistics are summarized in Fig. S11 and Table S8. 
 
4.4 Reference-guided assembly of single cell genomes 
The cN2-C1 composite genome (see section 4.6 below) was used as a reference genome. Quality 
trimming was done as described above in section 4.3. Paired-end reads were assembled using 
clc-assembly-cell-3.2 (CLCbio, http://www.clcbio.com/). Insert length was assumed to be within 
the range of 150bp to 1000bp (CLCbio program “clc_ref_assemble_long” was used with the 
command line flags: “-p fb ss 150 1000”). 
 
4.5 Genome annotation 
Genome annotations of the 96 de novo assembled genomes, as well the cN2-C1 composite 
genome, were done on the RAST server (46). Up to 1921 open reading frames, 3 rRNA Genes (1 
copy of 5S, 16S, and 23S rRNA genes) and 38 tRNAs were identified per de novo assembled 
genome. See Fig. S11 and Table S8 for assembly statistics. 
 
4.6. Generation of a cN2-C1 composite genome sequence 
Since we did not have a previously-sequenced complete genome of any strain within the cN2 
ITS-rRNA cluster, a ‘composite’ genome was constructed to serve as a mediator for referenced-

http://bmf2.colorado.edu/fastunifrac/
http://openwetware.org/wiki/BioMicroCenter
http://www.clcbio.com/
http://www.clcbio.com/
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guided assembly. The composite reference genome was created by combining 12 large 
overlapping contigs, selected by hand, from the de novo assemblies of cells within the cN2-C1 
cells (according to their ITS-rRNA). These contigs were selected such that they had large enough 
overlaps between contigs and that they cover the whole genome (determined by alignment to a 
few High-Light adapted complete genomes). This yielded a composite reference genome of 
1,650,354 bp in length which is within the size range of other High-Light adapted genomes. 
Annotation on the RAST server identified 1971 ORFs, 3 rRNA Genes, and 37 tRNAs.  
 
4.7 Genomic islands in a cN2-C1 composite genome 
Genomic island positions were determined by these two steps:  
(i) Genome alignment with previously sequenced genomes of high-light adapted 
Prochlorococcus cultures in which island regions have been identified (4, 22).  
(ii) The gene content, in terms of core or flexible genes, was checked for each predicted island 
from (i). The set of core genes was defined as all the genes that are shared in the HLII genomes 
(equivalent to ecotype e9312) within our culture collection, as described in Section 7. If at least 
66% of the genes in a predicted island consisted of non-core genes – it was determined to be a 
real island.  
The above steps result in the identification of six island regions within these closely related 
clades as listed in Table S9. 
 
5. Whole genome similarity analysis 
5.1 Whole genome sequence pair-wise distance estimations 
Mediator genome reference assembly  
We build upon a mediator genome reference assembly approach (18) with few modifications that 
takes into account the partiality of the genomes and the absence of a representative reference 
genome from the cN2 ITS-rRNA cluster. This method produced a multiple alignment of the 96 
partial genomes, letting us analyze the pairwise whole genome sequence variation in positions 
recovered on each pair of partial genomes.  
 
Single point mutations, insertions and deletions were detected for each assembly at each 
recovered position on the reference genome. Pair-wise distances between any two of the 96 
genomes were then estimated only for positions that had coverage ≥ 2 in both assemblies, using 
‘p-distance’. Insertions and deletions (Indels) were discarded from the estimation of genomic 
distances. One of the reasons we discarded Indels was that the number of detected Indels per 
genome (a few hundred) was not far from the expected number of Indels as a result of errors, as 
described in Section 5.8.  
 
Note that the method we used to estimate pair-wise distances between genomes tends to 
somewhat underestimate the real pairwise whole-genome sequence distances, since variable 
positions on the genomes are less likely to be mapped to the reference genome. Island regions 
had a lower recovery rate – because they probably have different gene-content and are often not 
mapped to the composite reference genome, which represents just one arrangement of island 
gene content. In addition, it seemed that islands are under-represented in the de novo assemblies. 
Two possible explanations for the observed underrepresentation are: (i) a higher DNA fragility at 
specific sites on these regions or (ii) a higher rate of repeats that limited assembly. 
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Statistics of the reference-guided assemblies and the genome alignments: 
Reference genome length: 1,650,354bp 
Mean assembly size: 1.144M bp±0.285M bp (mean±SD). (70% of the genome). 
Max assembly size: 1.570M bp (95% of the genome) 
Min assembly size: 0.359M bp (22% of the genome) 
Median: 1.245Mbp (75% of the genome) 
Recovery percentage is estimated assuming a genome size of 1.65Mbp 
 
Basic Statistics of the multi-alignment of the 96 single cell partial genomes: 
Conserved sites: 1,193,772bp (72% of the genome) 
Variable Sites: 424,125bp (26%) 
Parsimony-informative sites: 259,834bp (16%) 
Singleton sites: 163,260bp (10%) 
 
5.2 ITS and whole genome tree construction 
Phylogenetic trees were generated by MEGA4 (47). Distances were estimated using ‘p-distance’. 
Positions with pair-wise missing data were discarded from the distance calculation. Trees were 
un-rooted and were generated using “Neighbor joining” with bootstrap (Fig. S1). The delineation 
of C1-C5 clades was highly robust and also observed in trees constructed from genomic position 
subsets (Fig. S2). 
 
5.3 Identification of dimorphic SNPs between clades 
We refer to dimorphic sites as sites that are highly different between two populations of cells and 
are highly conserved within each of the two populations of cells. Dimorphic sites can be detected 
by several methods. Here we built upon a method based on mutual information (48). For each 
pair of clades (within the five cN2 clades C1 to C5) the mutual information for each bp position 
along the genome was estimated. The mutual information of two discrete random variables X and 
Y is defined as 
 
(5.1) 𝐼(𝑋, 𝑌) = ∑ 𝑃(𝑦)𝑦∈𝑌 ∑ 𝑃(𝑥|𝑦) log 𝑃(𝑥|𝑦)

𝑃(𝑥)𝑥∈𝑋  
  
where 𝑦 is clade (e.g. Y=[C1,C2,…,C5]) and 𝑥 is the bp value from the alphabet (e.g. 
X=[‘A’,’C’,’G’,’T’]) . To correct for variations in the number of cells within each clade in the 
samples, we used equal weights 𝑃(𝑦) = 1/𝑛 (where n is the number of clades). In the 
identification of dimorphic sites we used 𝑃(𝑦1) = 𝑃(𝑦1) = 1/2. Sites with 𝐼(𝑋, 𝑌) > 0.5 and p-
value<0.01, that were recovered in at least 2/3 of the cells within each of the two clades, were 
considered as dimorphic. To assess the significance of each position we calculated p-values by 
comparing to the corresponding mutual information estimation when cells are randomly assigned 
into clades. To generate random assignments into clades, first, a random pool of cells was 
created. The pool size equals the total number of cells within the two clade samples. Cells in the 
pool were randomly sampled from each clade, with repetition, such that each clade contributes 
equally. This is done to correct for differences in the number of cells within each clade. This 
pool is then randomly partitioned into clades, keeping the original number of cells within each 
clade. 10,000 random clade populations were generated and mutual information was estimated, 
to yield p-values. Last, a correction for multiple hypothesis comparisons was done (FDR (49)). 
Dimoprhic sites per non-overlapping 1000bp along the cN2-C1 composite genome are shown, 
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for all pairs within cN2-C1 to cN2-C5 clades, in Fig. S3. Note that the smaller number of cells 
belonging to the clades cN2-C4 and cN2-C5, in our data, limits the significance of their 
comparison.  
 
5.4 Identification of polymorphic sites within clades  
Polymorphic sites within clades were determined based on their entropy. Sites with entropy >0.5 
(entropy values were calculated with log base 2) that were recovered in at least 50% of the cells 
within the clade, were identified as polymorphic (Fig. S4, Table S10). This is roughly equivalent 
to the case where at least 10% of the cells have bases other than the value of the consensus bp.  
 
5.5 Dimorphic and Polymorphic sites between clades cN2-C1 and cN2-C3  
We describe in detail the differences between the cN2-C1 and cN2-C3 subpopulations. These 
subpopulations differ in 52885 dimorphic single nucleotide polymorphisms (SNPs), which 
represent 3.2% of the genome (see tree in Fig. 2B). Sites at which these SNPs occur are highly 
conserved within clades and different between-clades. 74% and 87% of sites that are dimorphic 
SNPs between C1 and C3 are identical (i.e. 100% conserved) within C1 and C3 respectively. The 
dimorphic SNPs are scattered along the entire genome (Fig. 3A blue) except for a few regions 
within genomic islands where there was not enough data to detect sites (Fig. 3A). C1 and C3 
dimorphic SNPs occur in 1519 genes out of 1974 genes in the genome – most of them core genes 
– and 8% are found in intergenic regions (cf. 9% of the genome is non-coding). Of the SNPs 
within coding regions 37% are non-synonymous, thus affecting the amino-acid sequences of the 
proteins they encode. In contrast to the scattered nature of the sequence variation between the C1 
and C3 clades, the variation within them is confined to a few regions of the genome (Fig. 3A 
black) indicating that most regions along the genome are conserved within clades and different 
between them – true for all pairwise comparisons within C1-C5 (Fig. S3,S4). Of the sites that are 
dimorphic SNPs between pairs, 77%±26% (mean±SD) are identical (i.e. 100% conserved) within 
clades.  
 
5.6 Determining the set of core genes 
In this study we define the set of core genes as genes that appear in all our culture collection 
genomes within the HLII lineage (equivalent to ecotype e9312). These include the following 13 
strains: MIT9311, MIT9314, MIT9401, MIT9301, MIT9312, MIT9107, MIT9201, MIT9321, 
MIT9202, MIT9215, SB, GP2, and AS9601.  
 
A set of 1463 core genes was identified by the above method (see also Additional Data file S1) 
 
5.7 Allelic variations in core genes 
Assessing genomic differentiation of genes based on FST  
γST is an equivalent measure of FST that measures genetic differentiation between subpopulations 
(20). It is widely applied to genomic data of asexual haploid organisms and is based on genomic 
distance between and within populations (20, 50). We used this estimator to assess the sequence 
differentiation between backbone-subpopulation across all genes (Fig. 3BC, Fig. S12). 
Qualitatively similar results were obtained based on amino acid sequences rather than nucleotide 
sequences. Interestingly, median FST of core genes was higher than that of flexible genes 
(p<0.001, Wilcoxon test), possibly due to a stronger diversifying selection or due to longer 
“residency” on genomes. 
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Assessing mutual information with more than two clades 
In addition to FST, we used mutual information to assess the degree of differentiation between the 
fine cN2 clades C1-C5, in a similar way of the identification of dimorphic SNPs, but applied 
upon five instead of two subpopulations and on genes instead of bases. Average mutual 
information per gene within clades C1 to C5, based on nucleotide sequences, for all genes in the 
cN2-C1 composite genome was estimated. Only genes that appeared in at least three cells per 
clade, in at least three of the five clades were considered. The genome-wide mutual information 
for all genes was 0.0519, 0.0733 and 0.0988 (25th, 50th and 75th percentiles). 
 
Mutual information per core gene was 0.0537, 0.0740, 0.0978 (25th, 50th and 75th percentiles). 
Mutual information per flexible gene was 0.0460, 0.0687, 0.1046 for these percentiles. Although 
core genes had higher median value, the null hypothesis that the core and flexible genes had 
equal median mutual information could not be rejected (Fig. S12D). There is a positive 
correlation between mutual information and FST (r=0.34, p<0.0001). It seems, however, that 
some genes with high FST have below average mutual information values. This is the case with 
genes that are relatively highly conserved even between backbone-subpopulations. Since FST is 
the ratio between inter-population diversity to whole-population diversity, FST does not depend 
on the absolute overall mean distance between sequences in the whole population. Mutual 
information however depends on the absolute overall mean distances, since it is averaged over 
all bases of the gene. Thus, genes can have low mutual information while high FST when absolute 
overall mean distance is small. Indeed there is a positive correlation between average sequence 
distance and mutual information (r=0.6325, p<0.0001), (Fig. S12F).  
 
Qualitatively similar results were obtained based on amino acid sequences rather than nucleotide 
sequences. 
 
Relation of the observed allelic variation to that found in genomes from cultured strains 
For each core gene in the cN2-C1 composite genome three distances were estimated:  
DRC: mean sequence distances between previously sequenced genomes and the cN2 C1-C5 
sequences. 
DBC: mean sequence distances between any two clades within the cN2 C1 to C5 clades. 
DCC:  mean sequence distances within any of the cN2 C1 to C5 clades. 
 
The mean distances over all core genes were:  
DRC = 0.135± 0.080 (mean±SD)  
DBC = 0.083± 0.080 (mean±SD)  
DCC = 0.044± 0.040 (mean±SD) 
 
DRC was found to have a higher median than DBC (Wilcoxon rank sum test, P<10-10). 
On average, DRC was almost twice as large as DBC (mean DRC/DBC ratio=~2, median=~1.8). Only 
24 genes (1.6% of the core genes) had smaller DRC than DBC. 
The above statistics indicate that the majority of core gene alleles of previously sequenced 
genomes are different from the same alleles found in the five cN2 C1-C5 clades.  
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The following set of 16 genomes, which includes all the High-Light adapted strains in our 
culture collection (HLI+HLII), were used to estimate DRC : MIT9311, MIT9314, MIT9401, 
MIT9301, MIT9312, MIT9107, MIT9201, MIT9321, MIT9202, MIT9215, SB, GP2, AS9601, 
PMED4, P9515, RCC278.  
 
5.8 Assessing the estimated error rates of single cell genomics  
We show that the overall error rate of single cell genomics i.e. – the cumulative error of MDA 
errors, sequencing errors and assembly errors – is about ~0.0001 errors per bp (equivalent to 
~10bases per 100Kb). This estimated error rate is based on experimental evidence as well as 
literature – as described in the details below. This is two orders of magnitude smaller than the 
average variations we observe between the Prochlorococcus single cells in our samples. 
 
Control experiment based on single cell sequencing of E. coli K-12 EcNR2 clonal cells from a 
single colony. 
We performed single cell whole genome amplification, sequencing, and assembly on eight 
replicate E. coli cells processed following Rinke et al (42). Briefly, individual cells were 
collected from a liquid culture inoculated from a single colony of E. coli EcNR2 and grown 
overnight in LB media at 30°C.  Cells were stained with 1X SYBR Green I DNA Stain 
(Invitrogen) and sorted with an Influx cell sorter (BD Biosciences) based on their side scatter and 
DNA fluorescence (531nm) characteristics following excitation at 488nm. Cells were lysed and 
amplified as described in section 2, with the exception that cells were sorted into an initial 
volume of 0.9uL of Tris-EDTA and amplified once using a final volume of 15uL. Standard 
paired-end Illumina libraries (2 x 150bp) with an average insert size of 290bp were prepared 
from sheared amplified DNA, and sequenced on the Illumina HiSeq 2000 platform by the DOE 
Joint Genome Institute.   
 
The same assembly program CLCbio version 3.2 and the same assembly command line flags (as 
described in section 4.4 above) were used to perform reference-guided assembly (using the E. 
coli MG1655 K-12 EcNR2 genome as a reference). 
 
Variations between the single cell genomes and the reference genome were minimal. Average 
recovery was  1655±505 (mean±SD) Kb per cell (using a coverage threshold of C=2, e.g. a site is 
considered as recovered if it was mapped by two or more reads – identical to the threshold we 
used in our analysis of the Prochlorococcus genomes). We observed 3.7±0.7 (mean±SD) 
substitutions per 100Kb and 1.3±0.3 (mean±SD) insertions/deletions per 100Kb as summarized 
in Table S11. We then evaluated the pairwise genomic differences per bp between all cells, in 
exactly the same way we did for our Prochlorococcus cells. The average genomic difference 
between any two E. coli cells was 0.000051±0.000014 (mean±SD) which is equivalent to ~5 
substitutions per 100Kb - as summarized in Table S12. A phylogenetic tree and the distribution 
of pairwise genetic distances are described in Fig. S13 A,B. We note that two rounds of MDA 
for Prochlorococcus, could, in the worst case, increase the error rate by a factor of two (i.e. to 
yield an average genomic difference of ~0.0001 per bp).   
 
Since these cells are clonal and are assumed to have identical genomes the above results can 
serve as an estimation (of the upper  bound) of the cumulative error rate in the overall single cell 
sequencing process - i.e from MDA, sequencing and assembly.  
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As mentioned above, this error rate is more than two orders of magnitude smaller than the 
variations we observe within the Prochlorococcus single cells in our samples. We observe, on 
average, 3500 bp substitutions per 100Kb between individual cell genomes, and 4700 bp 
substitutions per 100Kb between subpopulations. This suggests strongly that the differences we 
observe are biological differences and are not due to errors in MDA or single cell sequencing.  
 
Additional evidence:  
In addition to this experimental evidence, others have reported on error rates one can expect from 
single cell genomics, and they are very close to what we observed in the E. coli control 
experiment described above:  about 10-4 errors per bp.  More specifically, Rodrigue et al. (11) 
sequenced two putatively identical Prochlorococcus cells (MED4) from the same culture. The 
two single cells genomes were found to be different in ~20bp per 100Kb (representing error rate 
of ~2x10-4). Nurk et al (51) estimated error rates from one E.coli single-cell that was illumina 
sequenced and assembled with the same assembly program we used (CLCbio). Their reported 
error rate is strikingly equivalent to the one we observed with our E. coli control experiment, i.e. 
~5 differences and ~3 indels per 100Kb. Finally, Pamp et al. (52) sequenced five single-cells of 
the intestinal symbiont C. arthromitus from different fine filaments of the intestine of an 
individual mouse. They reported a total of 1287 base substitutions in these five ‘almost identical’ 
cells from different filaments (genomes size is ~1.5 Mb). They claim that the observed 
substitutions are mostly biological differences and not errors in the MDA or sequencing. In their 
Suppl. Mat., they make clear theoretical arguments as to why these observed differences are 
unlikely to be sourced from errors (see below).  
 
Theoretical arguments 
One final bit of evidence that supports the biological origin of the variation we see in wild 
Prochlorococcus is the pattern of the variation. As explained in (52) and in section 6.3 below, 
variations from errors are expected to be uniformly distributed along all genome positions and 
the number of mismatches per Kb should follow a Poisson distribution, and should not be 
clustered. Indeed the variations within the E. coli data follow a Poisson distribution (chi-square 
goodness of fit; P<0.05) and no apparent clustering is seen (Fig. S13 C,D,E).  In addition, if error 
rates are so small, the errors should not overlap between different single cells. More specifically 
the observed distribution of the number of positions with variants that appear in one, two, three 
cells etc. is equivalent to a binomial distribution with the same number of variants. This is indeed 
the case with the E. coli data (1-sided Binomial test, P<0.05). In fact, there are 330 sites with 
mismatches, 328 appear in one of the eight cells and two appear in two cells. In contrast, the 
variations we observe in Prochlorococcus are significantly different:  they are clustered and 
correlated. This is described in detail in section 6 where we talk about signatures of selection. 
 
Closest single-cell genomes in our samples and detection limit 
The closest pairs of individual cell genomes within our samples differ in between 300 to 500 bp 
substitutions (20-30 bp substitutions per 100Kbp). This rate of substitution is slightly higher than 
the expected error rate of 10-4 errors per bp. The distribution of substitutions along the genome in 
these pairs, however, indicates that the differences are not all from errors and that at least part of 
them are real (Their frequency per 1Kb has higher variance than a similar distribution expected 
from random errors, Two sample F-test, P<0.001, see also 6.2 below).   
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Given the combination of the vast diversity and the strong physical mixing (described in detail in 
SM section 10), it may not be that surprising that within the extent of our sampling, of few 
hundreds cells per sample, we did not detect cells with identical genomes. 
 
6. Signatures of selection 

6.1 Overview 
Is the differentiation between genomic backbones we have observed in Prochlorococcus a 
product of selection? To try to answer this question, we compared the observed sequence 
variation patterns to those obtained from coalescent simulations of a neutrally evolving genome 
sequence (53-55) (assuming a single constant-sized population - a reasonable assumption for 
Prochlorococcus evolution, See section 6.3 below) and find that the distributions of both 
dimorphic and polymorphic SNPs are qualitatively and quantitatively different from those 
simulated (Section 6.3), indicating that selection likely acted differently on different genomic 
regions. In addition, in contrast to simulations of neutral evolution, both SNPs classes tend to 
cluster in the genome (Fig. S16), possibly due to co-selection of gene cassettes and/or adaptive 
hitchhiking (54). Notably, the observed per-gene FST distribution is significantly different from 
those obtained by simulation (54) (Kolmogorov-Smirnov test, p<10-10). It has significantly more 
genes with very high FST (FST>0.95) – likely a result of diversifying selection, and a long tail of 
genes with low FST (FST<0.5) – at least in part reflecting negative selection (Fig. 3B). An 
additional signature of selection is the presence of highly polymorphic genomic regions within 
one backbone that are highly conserved in all other backbones - again in contrast to simulations - 
possibly indicating clade-specific selection pressures (or their absence within a specific clade) 
(Fig. S4). Lastly, we applied a complementary method (56) that is free of the demographic 
assumptions made in the coalescent simulations, and find that different functional classes of 
single nucleotide sites, e.g. intergenic and genic positions, have statistically different genome-
wide FST distributions – indicating that selection acts differently on each of these classes of 
nucleotides (56) (Fig. S17 and section 6.4 below).  
 
6.2 Coalescent simulations of neutral evolution 
We used coalescent simulations (53, 57) to obtain genome-wide distributions of  dimorphic 
SNPs between clades, polymorphic SNPs within clades and population differentiation between 
clades (FST) under a selectively neutral model, following Akey et al (54), with adjustments to fit 
to Prochlorococcus evolution. The coalescent simulates the evolution of the largest ecotype 
e9312, which account for almost 90% of Prochlorococcus cells in the upper 200m of the Atlantic 
Ocean. We assumed a single population, a constant population size and no recombinations. The 
simulated genomes were identical in length to the cN2-C1 composite genome (1,650,354 bp) and 
with a similar GC content (32%). Sample size was 96 – as in our real sample  (i.e. 96 single cell 
genomes).The scaled mutation rate (Θ) was determined such that the simulated average pair-wise 
sequence distance (Dall) between genomes was similar to the observed Dall (see Fig. S14).  
 
To compare population differentiation between the simulated genomes and the observed 
genomes, we clustered the resulted simulated genomes based on pair-wise genomic distance, to 
obtain the same number of clusters (subpopulations) as in our real data (Fig. S15). The simulated 
genomes were clustered to no more than seven clusters and then the five largest clusters were 
considered for the analysis (for a comparison to the observed results of the five cN2 clades C1 to 
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C5). Polymorphic and dimorphic sites were determined in the same way as described for the 
observed data. To compute the genome-wide per gene distribution of  FST, the positions of genes 
on the chromosome in the simulated genomes were identical to their positions in the cN2-C1 
composite genome.  
 
A Θ value of 0.05 yielded average π values that are similar to the observed data (Fig. S14). This 
choice of Θ yielded nearly maximal levels of median genome-wide FST values (gene-by-gene 
FST). In fact, as can be seen in Fig. S14, there is no choice of Θ that yield median FST values as 
high as in the observed real data.  
 
We note that the estimated Θ value, to yield comparable average pair-wise genomic distances to 
the observed one, was much smaller than our estimation of Θ in Prochlorococcus based on the 
consensus population size. See more in Section 11.  
A Θ value of 0.05, which produced the same average pair-wise genetic distance as in our 
observed data, correspond to ~2.5·108 generations to the most recent common simulated ancestor 
(assuming µ=10-10 mutations per base per generation). This is the mean number of generations 
that, under a neutral evolution, results in the same amount of nucleotide diversity as in our 
observed data. This number of generations is equivalent to ~106 years (assuming a generation 
time of ~1day).  
 
For the above coalescent simulations we used the Richard Hudson “MS” software tool (58) 
(http://home.uchicago.edu/rhudson1/source/mksamples.html) to generate random genealogies. 
We then used the molecular sequence simulator software tool  “seq_gen” (59) to generate the 
neutrally evolved genome sequences (using the command line flags ‘ –mHKY -f 0.34 0.16 0.16 
0.34’; the second flag was used to yield mean GC-content of 32%).  
 
We compared between simulated and observed distributions as follows: 
Dimorphic SNPs density profile along the chromosome was calculated per 1000bp (non-
overlapping windows). The distribution of dimorphic SNPs for each pair of clades (clusters), for 
each simulation was then evaluated (similar to Fig. 3A in the main text). The empirical 
distributions of dimorphic SNPs density were found to be similar to Poisson distributions (chi-
square goodness of fit; P<0.001). The observed distributions did not resemble Poisson 
distributions and had much higher variance (Two sample F-test, P<0.001).  Comparisons 
between the observed and simulated genome-wide gene-by-gene FST distributions were 
performed by the Kolmogorov-Smirnov test, all yielded p<10-10. See also Fig. S15, S16.  
 
6.3 Comparison of FST distributions of different single-nucleotide genomic classes  
We built upon the analysis of Barreiro et al (56) and examined the genome-wide distributions of 
different genomic positions: Intergenic sites (i.e. non-coding sites), Genic sites (i.e. coding sites), 
codon first base, second base and third base. The distributions were found to be significantly 
different (Fig. S17). The fraction of positions with very low FST values (FST <0.05) was 
significantly different between all pairs of classes (chi-square, P<0.0001).  The fraction of genic 
positions with very low FST was smaller than the corresponding fraction of intergenic positions. 
This may be interpreted as negative selection globally reducing population differentiations at 
genic regions, especially at the first and second codon bases. On the other hand the fraction of 

http://home.uchicago.edu/rhudson1/source/mksamples.html
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positions with very high FST (FST >0.95) was significantly different between all pairs of 
nucleotide classes (chi-square, P<0.0001). 
 
6.4 Additional notes on identifying signatures of selection  
Most classic population genetics theories have not been developed with huge mostly-asexual 
populations, with a large population-scaled mutation rate N ·µ >>1 (here N is the census 
populations size, not the ‘bounded’ estimated-from-data effective population size), in mind, or to 
deal with adaptation from standing genetic variation (see also section 11).  Our choice of 
methods for identifying signatures of selection was carefully determined.  We chose not to use 
methods based on dN/dS, as we believe their interpretation could be questionable in the context 
of our data (60) due to two reasons:  (i) It is not clear if cells in our samples represent a single 
population or evolutionary independent lineages for the sake of the dN/dS statistical analysis;  
this may have significant implications on the interpretation of the analysis - as nicely explained 
by Kryazhimskiy and Plotkin (60). (ii) Synonymous substitutions might not be neutral in 
Prochlorococcus evolution (or at least not all of them can be considered as neutral). For 
example, synonymous substitutions may influence internal codon preference or may affect DNA 
or RNA structural properties (61, 62). Since even weak fitness differentials may play a role in 
Prochlorococcus evolution (as proposed in the main text) we think dN/dS methods could be 
misleading here. We hope that the growing availability of single cell genomics data will invite 
the development of a population genetics theory that will be more directly applicable to free-
living bacterial species. 
 
7. Ortholog clustering and gene content analysis 
Clusters of Orthologous Genes 
Genes were classified into Clusters of Orthologous Genes (COGs) using the pipeline described 
in (63).  Genes from previously sequenced Prochlorococcus as well as all genes from the 96 
single cell partial genomes (the de novo assemblies annotated by RAST) were included. Final 
refinement of the clusters was done manually to improve the clustering. We note that due to the 
partiality of the genomes, the high number of contigs (resulting in many partial sequences of 
genes), and the high sequence diversity, these clusters are not perfect and we had to manually 
check any result that were based on the gene clustering analysis. 
 
Detection of differential gene sets between backbone-subpopulations (or clades) 
Genes that were candidates to be “differential” between clades (i.e. appear in one or more clades 
but absent from the other clades) were selected by the following 3 steps:  
 
1. Choose all genes that pass either (i) or (ii) criteria 

(i) Genes that appear in at least 50% of the cells of a clade population, in at least one clade 
population. 

(ii) Genes that appear in more than 7 cells within at least one clade population. 
 
2. Omit the following genes from the gene set found in (1):  

(i) All genes that were found as HLII core genes (genes that appear in all the culture HLII 
genomes). 

(ii) Genes that appear in less than 3 cells in total or in more than 50 cells in total.  
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3. Apply ‘hierarchical clustering’ to genes according to their presence/absence in the 96 partial 
single cell genomes. 

 
Steps 1 and 2 resulted in a set of 404 genes. The genes were then clustered using standard 
hierarchical clustering, using ‘hamming distance’ and ‘complete’ linkage in Matlab (Fig. S5). 
Based on this clustering analysis and on multiple alignment of the annotated partial genomes, 
gene cassettes (or part of cassettes) that were present in one or more clades but absent from the 
others were identified (Table 1, Table S1). 
 
Detection of gene cassettes shared by a few closely related cells (subclades) within backbone-
subpopulations 
Several gene cassettes were found to be shared by a small number of closely related cells within 
backbone-subpopulations, and not by other cells. For example a cassette with Type II secretion 
and type IV pilus genes was identified in 8 cells forming a subclade  within cN2-C1 (named C1a; 
include the cells:518D8, 527P5, 528K19, 521B10, 521O20, 519O11, 527L16, 495N16) see 
Table S13 and Fig. S5. Interestingly one of the cells in the C1a subclade (518D8) was flow-
sorted attached to a gamma-proteo bacterium (the two cells were physically attached and DNA 
from both cells was amplified and sequenced).  
Other examples of gene cassettes associated with specific subclades are listed in Table S13. 
 
Predictions of the position on the genome of the differential genes (Table 1, Table S1) 
To predict the likely position of genes we performed the following steps: 
1. The de novo assembled partial genome of each cell was aligned to the cN2-C1 consensus 

genome using mauve (64). 
2. For each gene for each cell 

a. If the contig is aligned then get position from alignment. 
b. Else (not aligned) 
c. Try to find if other parts of the contigs are aligned 
d. If yes, then use these as anchors and predict gene position by extrapolation. 
e. If not, gene position is not predicted. 

 
Predictions of gene-content similarity between pairs of nearest-neighbor cells 
Pairs of annotated single cell nearest-neighbors genomes were aligned using mauve (64). Pairs 
were determined as non-identical if there is a difference in gene content in aligned contigs. When 
a whole contig was not aligned to any contigs in the other cell, no violation to the identical gene-
content test were considered. Because these are partial genomes, pairs of cells could only be 
predicted to have identical gene-content. Three pairs of sister cells were determined as possibly 
having identical gene content: (i) B241_529J11_C1 and B245a_518E10_C1 (see also Table 
S13); (ii) B241_527L16_C1 and B243_495N16_C1; (iii) B245a_521N3_C1 and 
B241_528N8_C1. Note that the pair-wise genomic distances of these pairs was among the 
smallest in our dataset (between 300 to 500 substitutions across the entire genome, based on the 
mediator reference-guided assembly method described in section 5.1).  
 
Genome synteny 
The exact nature of genome synteny could not be determined since the genomes are partial and 
each is composed of hundreds of contigs. Never the less, multiple alignment of the partial 



 
 

19 
 

genomes tells us that they are broadly syntenous although the synteny is often broken within 
genomic islands (Fig. S21).   
 
8. Genomic comparison of populations between samples  
The whole genome population differentiation estimator FST (20) did not show population 
differentiation between cN2-C1 populations between samples when applied on whole genome 
distances (pairwise comparison, P>0.05). We could not assess this test to the other clades (i.e. C2 
to C5), due to the small number of sequenced-cells from each one of them.   
 
A weak signal of changes in allele frequencies, over the seasons, was observed in a small number 
of genes (Fig. S18).  This could hint at selection for specific alleles of these genes. As discussed 
later in Section 13 we predict that a change in allele frequency is a possible adaptation strategy 
over ecological timescales.   
 
9. Estimating the number of backbone subpopulations and their relative abundances 
99% clusters were the best match to backbone-subpopulation clusters defined with whole 
genomes 
Clusters of ITS-rRNA at the level of 99% sequence similarity were the best match to backbone-
subpopulation clusters defined with whole genomes. ITS-rRNA clusters at the level of 99% 
sequence similarity were decided by Mothur (65), with manual verification within the cN2 C1-
C5 backbones. To assess standard errors of 99%-ITS clusters abundance, the relative abundance 
was calculated for each of the four 384-well plates (cells from each sample were flow-sorted into 
four 384-well plates, thus we treated each of the four plates as a sample replication) and then 
bootstrapped by 1,000 resampling from each plate with replacement (Fig. 4A in the main text). 
To assess whether a backbone subpopulation significantly changed in abundance between 
samples, samples where pooled and then randomly assigned into samples (10,000 times) to 
compute p-values. Multiple hypothesis correction was done by FDR (α=0.05).  To assess the 
significance of differences in the relative abundance changes among samples between each pair 
of backbone subpopulations we normalized the relative abundance by the mean relative 
abundance among samples and define the distance 𝐷𝑖𝑗between normalized relative abundance 
profiles of subpopulation i and subpopulation j as: 
 

(9.1) 𝐷𝑖𝑗 = �∑ (𝑃𝑖𝑘 − 𝑃𝑗𝑘)2𝑆
𝑘=1  

    
where Pik is the normalized relative abundance of subpopulation i in sample k and S is the 
number of samples. To assess the significance (p-values) of the pairwise distances 𝐷𝑖𝑗 we 
compared this measure to the same measure but with random assignments to samples, in a 
similar way as described above (10,000 times). Multiple hypothesis correction was done by FDR 
(at α=0.05). 17 out of 55 pairs within the 11 largest backbone- subpopulations (whose profiles 
presented in Fig. 4A main text) were found to have significantly different abundance profiles 
over the seasons (reflected by significantly higher Dij than expected with randomized samples). 
The equivalent mean number of pairs with different abundance dynamics expected by chance is 
<1. 
 



 
 

20 
 

The rarefaction curves in Fig. 4B in the main text were generated by Mothur at the level of ITS-
rRNA sequence similarity of 99%.  
 
10. Estimation of the population size of Prochlorococcus that becomes well-mixed within 
ecologically relevant time scales  
Estimating the distance between two ‘just-divided’ daughter cells over time 
Prochlorococcus cells are non-motile, neutrally buoyant, and do not form aggregates. Therefore, 
the dispersal of single cells is dictated by Brownian motion at early times (order of seconds) and 
by ambient fluid motion at longer times. Here we focus on the latter, since the former only 
dominates for very short timescales. Importantly, only relative fluid motion (i.e., differences in 
fluid velocity) matters for dispersal (66), because a uniform flow transports cells without 
changing their relative distances. A dominant source of relative fluid motion in the ocean is 
turbulence, which entails velocity differences between different points in space. Since non-
motile, neutrally buoyant cells cannot move relative to the fluid, those same velocity differences 
govern the separation between cells. As a consequence, any two cells tend, on average, to 
separate over time.  
 
A fundamental length scale in turbulence is the Kolmogorov scale (67), 𝜂, the scale at which the 
kinetic energy transferred down from larger scales by inertia balances the dissipation of energy 
by viscous forces. Typical values of the Kolmogorov scale in the upper ocean are 𝜂 = 1-5 mm. 
At scales smaller than 𝜂, turbulence reduces to laminar shear, where the velocity difference 
between two points, 𝑢𝑆, simply increases linearly with their separation distance, 𝑑, and with the 
magnitude of the fluid velocity gradient, g, as (68): 
(10.1) 𝑢𝑆 = 0.42𝛾𝑑 = 0.42(𝜀/𝑣)1/2𝑑   (for 𝑑 ≪ 𝜂),  
 
where 𝑣 = 10−6 m2s−1 is the kinematic viscosity of water and g = (e/n)1/2 is the Kolmogorov 
shear rate. At separation distances 𝑑 larger than 𝜂, the velocity difference between two points, 
𝑢𝐿, scales with the one third power of the energy dissipation rate, as (68): 
 
(10.2) 𝑢𝐿 = 1.37(𝜀𝑑)1/3    (for 𝑑 ≫ 𝜂) . 

 
We can use these expressions for the separation velocities to compute the separation distance of 
two Prochlorococcus cells over time. First we ask how much time it takes for two ‘just-divided’ 
cells to be at a distance greater than 𝜂 (see also ref. (69)). This time is obtained by integrating the 
inverse of the velocity in Equation 10.1 over the separation distance, from the initial separation 
distance (taken to be the cell diameter of Prochlorococcus, D = 0.6 µm) to the Kolmogorov 
length scale:   
 
(10.3) 𝑇𝑆 = ∫ d𝑥

𝑢𝑆(𝑥)
=𝜂

𝐷 ∫ d𝑥
0.42(𝜀/𝑣)0.5𝑥

=𝜂
𝐷

1
0.42(𝜀/𝑣)0.5 ln (𝜂

𝐷
) 

 
Typical values of 𝜀 in the ocean range from 10−8 m2s−3 below the mixed layer to 10−6 m2s−3 
within the mixed layer. For these values, one obtains h = (n3/e)1/4 = 3.2 mm and 1 mm, 
respectively, resulting in 𝑇𝑆 = 204 s below the mixed layer and 𝑇𝑆 = 18 s within the mixed layer. 
Therefore, two ‘just-divided’ cells will be separated by a distance larger than the Kolmogorov 
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scale within a few minutes at most, and from that point on, the distance between them is 
prescribed by Equation 10.2. 
 
We can apply the same approach to compute the separation time once cells are in the second 
regime (separation distance larger than 𝜂), obtaining:  
 
(10.4) 𝑇𝐿 = ∫ 𝑑𝑥

𝑢𝐿(𝑥) =𝐿
𝜂 ∫ 𝑑𝑥

1.37(𝜀𝑥)1/3 =𝐿
𝜂

1
2/3

1
1.37𝜀1/3 �𝐿2/3 − 𝜂2/3� = 𝐿2/3−𝜂2/3

0.91𝜀1/3 , 
 
which can be solved to obtain the separation distance L after a given time 𝑇𝐿: 
 
(10.5) 𝐿 = (0.91𝜀1/3𝑇𝐿 + 𝜂2/3)3/2~0.87𝜀1/2𝑇𝐿

3/2   (for L >> 𝜂) 
 

For 𝜀 = 10−8 m2s−1, the separation distance estimated by this approach will be L ~ 19 m after 
𝑇𝐿 = 1 hour; L ~ 2.2 km after 𝑇𝐿 = 1 day; and L ~ 41 km after 𝑇𝐿 = 1 week.  
 
At long times, these values of L might be an overestimate of the actual separation distance and 
the actual values of L may be an order of magnitude smaller. This can be seen by considering 
results from tracer dispersal experiments in the ocean. Because Prochlorococcus cells can be 
assumed to behave as passive tracers (they are non-motile and neutrally buoyant), we can 
empirically estimate their dispersal also by using dispersion coefficients obtained experimentally 
for patches of tracers injected in the ocean. This is done through estimation of the variance 𝜎𝑟𝑐

2  of 
the patch radius (a proxy for the area of the patch) after a time t following point-injection of the 
tracer (70-73). Observations resulted in the empirical relation 𝜎𝑟𝑐

2 = 0.0108𝑡2.34, where 𝜎𝑟𝑐 is in 
cm and 𝑡 is in seconds (see Fig. 1 in ref. (70)). This relation yields  𝜎𝑟𝑐 = 6 km after a time t = 1 
week.   
 
Therefore, both estimates indicate that two ‘just-divided’ Prochlorococcus cells will be separated 
by at least a few kilometers over the course of a week, for typical turbulence conditions in the 
upper ocean. We conclude that a conservative estimate is that over the course of one week, cells 
in a horizontal area of 3 km by 3 km in the upper ocean are well mixed. 
 
To summarize, in characteristics upper ocean water’ just-divided’ Prochlorococcus cells will not 
be within the same milliliter of water within minutes, will be tens of meters apart within one 
hour, and will be a few kilometers away within a week. 
 
Vertical dispersion 
The above analysis addresses horizontal separation. The vertical separation d between cells after 
a time t can be estimated from the relation 𝑑 = (2𝐾𝑉𝑡)1/2, using empirically measured values of 
the vertical dispersion coefficient, 𝐾𝑉. Within the mixed layer, typical values of the vertical 
dispersion coefficient are on the order of 𝐾𝑉 = 10-2 m2 s-1. Over the course of one week, this 
results in a vertical separation of ~100 meters, implying that mixing spans the entire depth of 
typical mixed layers. Below the mixed layer, 𝐾𝑉 = 10-5 m2 s-1 and the separation distance over 
one week is ~3.5 m. 
 
Estimating the census population size within a well-mixed water parcel 
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A conservative estimation is that the population in a water parcel of 3km x 3km x 3m can be 
considered as well-mixed over a week time, which translates to a total of more than 1017 
Prochlorococcus cells per such water parcel. To get lower bounds of the number of cells of a 
backbone-subpopulation in such a water parcel, let us assume there are hundreds of backbone-
subpopulations with a minimal relative abundance of  10-4 (equivalent to assuming there is at 
least one cell from each subpopulation per 1mL). Thus there are at least 3x1013 cells from each 
backbone-subpopulation in such a water parcel. For the more abundant clades and within the 
mixed layer, these numbers are probably larger (>1015 cells).  
 
Estimating lower bounds of evolutionary relevant census population size (N) 
Prochlorococcus populations are stable, with minimal annual and inter-annual density >104 
cells/ml. Assuming no significant population bottlenecks, we can estimate N to be equal to the 
minimal annual census population size. We note that High-Light adapted populations spend part 
of the year below the mixed layer (in summer when the mixed layer is very shallow). At these 
times the populations are more stratified. Thus, mixed water parcels in the summer are 
effectively smaller in the vertical dimension than in the winter time, when they are effectively 
mixed over ecological time scales, across the whole mixed layer. Since we are interested in a 
conservative estimation of N, we consider the ‘below mixed layer’ vertical range of ~3m as well-
mixed. The smaller vertical range is however compensated, to some degree, by a larger census 
population size in summer (~105 cells/ml as opposed to ~104 in winter). To conclude, a 
conservative estimate is that of N > 3x1013 cells for most High-Light-adapted clades, in particular 
the ones investigated in this study. 
 

11. Estimating ‘effective population size’ and its evolutionary consequences 
Why is it hard to estimate effective population size for Prochlorococcus populations?  
The ‘effective population size’ (74), Ne, is defined as the size of an imaginary, theoretically ideal 
population affected by genetic drift at the same rate per generation as the population being 
studied. Estimating Ne is hard in general and is even harder in the case of Prochlorococcus. 
There are two main reasons for this difficulty:  
1) The huge census population size suggests a very large Ne. So large that Ne may well be much 

larger than the number of generations to the most recent common ancestor (MRCA) of all 
High-Light adapted Prochlorococcus cells in the oceans. Estimation of Ne is commonly done 
using coalescent theory (53). In a coalescent the mean number of generations to MRCA is 
~Ne. If the number of generations back to the MRCA is much fewer than Ne generations, 
then the coalescent does not describe the situation well. Let us assume the MRCA of all 
High-Light adapted cells was alive 100 Million years ago (a reasonable assumption). This is 
equivalent to ~2·1010 generations, assuming ~200 generations per year. In a situation where 
Ne > 2·1010  the estimation of Ne from a coalescent will yield a smaller Ne than the real one.  

2) It is reasonable to believe that due to the large Ne and a streamlined genome there are very 
few truly neutral positions on the genome (since a large Ne result in selection of even weak 
fitness differentials). Synonymous sites are commonly used for the estimation of Ne, but they 
are unlikely to be truly neutral (see section 6.4). Thus, using nucleotide diversity (π) based on 
synonymous sites, likely underestimates π.  It could be that the real ‘neutral’ divergence is in 
fact saturated. Saturation is a situation where most neutral positions have mutated more than 
once. The nucleotide diversity at equilibrium depends on what assumptions are made, and 
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can range anywhere between π ~0.1 to 0.5 depending on codon bias, GC content, amino-acid 
content and other factors (75).  
 

We estimate below lower bounds of Ne based on π. Since π values may be close to realistic 
saturation values, Ne is likely larger than could be estimated from nucleotide divergence. We 
believe the lower bounds may be even a few orders of magnitude smaller than the real Ne.  

 
Estimating lower bounds to Ne based on nucleotide diversity (π) 
A common method is to estimate Ne based on ‘neutral’ nucleotide diversity (π). In the absence of 
a better way to estimate Ne from the genome sequences, we estimate here lower bounds to Ne 
based on nucleotides divergence of non-conserved third codon positions (167562 positions) as an 
approximation for synonymous sites. These are likely not ‘true’ neutral positions and thus, π 
values from ‘true’ neutral sites, are probably higher. Assuming a constant population size and a 
known constant mutation rate (another assumption that has to be taken with care) one can 
estimate 𝑁𝑒 by 𝑁𝑒 = 1.5π

𝜇(3−4π)
 as described in Lynch and Conery (76). Using this approach we get 

π=0.216 which gives us 𝑁𝑒𝜇 = 1.5π
3.5π

= 0.1516. Assuming 𝜇 = 10−10 mutations per bp per 
generation we get lower bounds of 𝑁𝑒= ~1.5·109. Note that this is a lower bound of 𝑁𝑒 for the 
e9312 ecotype. Lower bounds for the whole Prochlorococcus species should be larger.   

 
A reasonable estimation of the real Ne  
Several factors are known to decrease the ratio between Ne and the census population size (77) 
including: large variation in offspring number, age and stage structure, and factors common in 
sexually reproducing organisms (e.g. division into two sexes, inbreeding). Since the above 
factors do not play role in the evolution of Prochlorococcus, and because it is also reasonable to 
assume no major bottlenecks in population size (though this is hard to prove as we simply do not 
know) it is realistic that Ne values are in fact much closer to the census population size than to 
the lower bounds calculated from the data. It is thus reasonable to assume that Ne of each 
backbone-subpopulation is much closer to the census population size of at least 1013 cells than to 
the lower bounds estimated from nucleotide divergence. 
 
We suggest that Prochlorococcus is likely the organism with the largest Ne on the planet. 
    
Evolutionary consequences of a very large Ne 
The huge Ne together with a mutation rate (µ) that is commensurate with other bacteria (78) 
(~10-10 mutations per bp per generation), and a streamlined genomes size (1.5 to 1.8Mbp) imply 
that adaptation mostly occurs from standing genetic variation (27, 79), is not mutation limited 
(80), and is probably characterized by “soft genetic sweeps” (80, 81) and clonal interference (82-
84) in which independently generated adaptive mutations rise in frequency simultaneously.  
Future work is required to better understand the exact mechanisms and timescales of adaptive 
evolution in wild Prochlorococcus populations.   
 
12. Homologous recombination 
BratNextGen software (http://www.helsinki.fi/bsg/software/BRAT-NextGen/) was used with 
default settings to detect recombination (85) from the 96 reference-guided assemblies. The 
learning algorithm was run for 20 iterations, and the statistical significance of the recombinations 

http://www.helsinki.fi/bsg/software/BRAT-NextGen/


 
 

24 
 

(p=0.05) was determined using permutation sampling with 50 replicate analyses, which were run 
in parallel on a computing cluster. This approach has previously been used to detect 
recombinations in Staphylococcus aureus data (86) and in (85) it was shown to yield almost 
identical results with the analysis of the Streptococcus pneumonia data from (87). 
 
On average a total of 13737±14000 bp (mean±SD) per single cell genome were predicted to be 
acquired by recombinations, reflected in 9.3±2.5 (mean±SD) recombined stretches of DNA, (Fig. 
S19).  
 
Only a small fraction of the dimorphic SNPs between pairs of the five cN2 C1-C5 clades, 
coincides with positions detected as recombined. For example, only 15% (2028 bases) of the 
13,437 dimorphic SNPs between C1 and C2 coincide with a position detected as recombined in 
at least one cell in C1 or C2 population samples; 6.7% (3580 bases) of the 52,885 dimorphic 
SNPs between C1 and C3; and 4.1% (1520 bases) of the 36874 dimorphic SNPs between C2 and 
C3 (Fig. S20). Thus, the majority of the observed dimorphic SNPs likely originated by mutation 
and not recombination. As a comparison, in (87) a total of 57736 SNPs were identified in 240 
Streptococcus pneumoniae isolates, 50720 (88%) of which were predicted to be introduced by 
702 recombination events.  
 
Only a small fraction of polymorphic sites within clades are identified as recombined (see Table 
S10); therefore, homologous recombination does not seem to be the main mechanism to explain 
the cohesion of backbone-subpopulations. 
 
13. Estimation of lower bounds of adaptation times 
To estimate lower bounds of adaptation times we assume a simple logistic growth model (88) 
with some maximum carrying capacity. We assume the population is composed of a wild type 
and a mutant. The relative abundance of the mutant at time t is p. The change of p over time, 
assuming the mutant has a fitness advantage s is described by: 
 
(13.1) 𝑑𝑃

𝑑𝑡
= 𝑠𝑝(1 − 𝑝) 

 
The solution for this equation is: 
 
(13.2) 𝑃(𝑡) = 𝑃0

𝑃0+(1−𝑃0)𝑒−𝑠𝑡           
We can estimate the time  it takes a mutant with initial relative frequency 𝑃0 to reach a 
significant fraction of the population (say 50%), and get: 
 
(13.3)  𝑇50 = − 1

𝑆
𝑙𝑛 𝑃0

1−𝑃0
           

Lower bounds for the time of establishment of new de novo mutations 
A new de novo mutation that did not exist in the population has initial frequency 𝑃0 = 1

𝑁𝑒
  

assuming a conservative value of 𝑁𝑒 = 1013 will estimate 𝑇50~ − 1
𝑆

𝑙𝑛𝑃0 = − 1
𝑆

𝑙𝑛1013~ − 30 1
𝑆
  

. That means that it takes a new mutant with selection advantage of 10% (which is a huge 
selection advantage) around 300 generations (>1 year) to reach 50% of the population. With 
more realistic s values of ~1% the establishment takes 3000 generations (>10 years). 
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Note these estimations are lower bounds for the estimation of time to reach 50%, because (i) we 
assume there are only two equi-fitness types in the population while in real Prochlorococcus 
populations there are many more equi-fitness types (ii) Conditions are assumed to not change 
after time t=0. (iii) We assume no other mutations are introduced after time t>0. 
We therefore conclude that a new de novo mutation is unlikely to be established over ecological 
timescales (e.g. over seasons - tens of generations). 
 
Lower bounds for the time of establishment of new acquired gene or a gene cassette 
Let us assum the gene is acquired by just one cell in the population, and that it confers a selective 
advantage s. This case is equivalent to the behavior of a de novo mutation (assuming it is not 
rapidly transferred horizontally to other cells in the population). Thus lower bounds for s=1% is 
~10 years.  
 
Lower bounds for the time of establishment of a standing mutation 
Assuming an initial frequency of a standing mutation is 𝑃0 = 1

𝜇
 we get an establishment time of 

𝑇50 = − 1
𝑆

𝑙𝑛 𝑃0
1−𝑃0

= − 1
𝑆

𝑙𝑛
1
𝜇

1−1
𝜇

~ 1
𝑆

𝑙𝑛𝜇~231
𝑆
    assuming a mutation rate of  𝜇 = 10−10 mutation 

per bp per generation. This is not very different from the T50 of the establishment of a de novo 
mutation. Unless a standing mutation has a very strong selective advantage it will take at least 
hundreds of generations to establish (>1 year). 
 
A possible strategy for adaptation over seasonal timescales 
An important consequence of the above analysis is that only mutations with a large initial 
frequency 𝑃0 can be established over seasonal timescales of tens of generations assuming 
ecologically realistic s values. For example if 𝑃0 = 0.1 and s=0.1, we get T50 ~ 20 generations. 
This suggests a design principle that allows fast response of populations to environmental 
changes that occur within tens of generations – through shifts in allele frequency. This principle 
is also valid if the selected entities are clades instead of alleles. Thus, populations can respond to 
rapid environmental changes, such as seasonal changes, through shifts in the relative abundance 
of clades that have different fitness in different seasons. Our data suggest that adaptation over 
seasonal timescales in Prochlorococcus is mainly achieved through such shifts in the relative 
abundance of clades – as observed in the change in the relative abundance of backbone-
subpopulations over the seasons. There is only a weak signal of a change in allele frequency in a 
few genes between seasons (see Fig. S18 and section 8 above).   
  
14. Estimation of backbone-subpopulations divergence times 
Estimating divergence time for prokaryotes can be challenging. Here we try to give rough 
estimation of the divergence times between the backbone-subpopulations we observed in our 
data. 
 
Estimation based on sequence divergence along branches 
In the absence of ‘true’ neutral positions at hand we based our analysis of sequence divergence 
on non-conserved third base codons (as described in section 11). The cN2 C1-C5 clades show 
divergence of d=~0.2 substitutions per bp (excluding cN2-C2 that is more closely related to cN2-
C1). Since these values are in a range that could be within saturation (75) we can only estimate 
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lower bounds of divergence times. Saturation is a situation where too much time has passed from 
divergence and most neutral positions have mutated more than once.  
 
Assuming a constant mutation rate of 10-10 mutations per base-pair per generation (78) it is 
possible to estimate the total branch length between two leaves in a phylogenetic tree by 
𝑇 = 𝑑/2𝜇 where 𝑑 is the estimated number of mutations that have occurred on the branches, 𝜇 is 
the mutation rate per bp per generation and 𝑇 is the number of generations from the most recent 
common ancestor. Based on these assumptions the cN2-C1 to cN2-C5 clades likely diverged at 
least a few million years ago.  
 
Comparison of divergence rates with other organisms 
This is another useful method for the estimation of divergence times. The average rate of 
sequence divergence at synonymous sites in homologous protein coding regions between E. coli 
and S. enterica (89, 90) were estimated at 0.9% per million years. If divergence rates within 
Prochlorococcus are similar it would indicate the cN2 C1-C5 clades shared a common ancestor 
at least 10 million years ago. Note that the estimated number of generations per year for both E. 
coli and Prochlorococcus is very similar (100-300 per year) as does the mutation rate (𝜇) (90). 
    
Cytochrome C amino acid substitutions, which are often used as a molecular clock, estimate the 
divergence of the cN2 C1-C5 clades could have been even earlier. For example the number of 
amino acid substitutions between cN2-C1 and cN2-C3 Cytochrome C (10% amino acids 
substitutions) is about the same as the number of Cytochrome C substitutions between human 
and horse (estimated to have diverged between 100-160 million years ago). Prochlorococcus 
proteins have been shown to evolve faster than other organisms though (91). 
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Fig. S1. Bootstrap values of the ITS-rRNA tree (A) and whole-genome tree (B) of the 96 
sequenced single cells. Trees are neighbor joining with ‘p-distance’ (proportion of nucleotide 
differences). ITS sequences from cultured representatives of the same ecotype are also included. 
Numbers near internal nodes are bootstrap values. Trees were constructed by MEGA4. 
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Fig. S2. Phylogenetic tree of the 96 single cells based on different classes of genomic 
positions. (A)  Coding positions (1,491,155 bp). (B)  Non-coding positions (159,199 bp). (C)  
Randomly chosen 100 Kbp. (D) Positions excluding genomics islands (1,433,955 bp). (E)  
Positions within genomic islands (216,399 bp). Trees are neighbor joining using p-distance. 
Numbers near internal nodes are bootstrap values. Trees were constructed by MEGA4. 
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Fig. S3. Abundance of dimorphic sites, per non-overlapping 1000bp, between all pairs of 
the five clades within the cN2 ITS-cluster.  Black/white stripes below each graph indicate 
positions with sufficient data to support the dimorphic site analysis (red). Gray bars represent 
genomic islands as defined in section 4.7. 
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Fig. S4. Abundance of polymorphic sites, per non-overlapping 1000bp, within clades cN2 
C1-C5. Black/white stripes below each graph indicate positions with sufficient data to support 
the polymorphic site analysis (black). Gray bars represent genomic islands as defined in section 
4.7. 
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Fig. S5. Differential gene sets between clades. Each column is a gene. Each row represents a 
single cell. The order of the single cells is according to the leaf order of the whole genome 
phylogenetic tree. Matrix representation: Each white/black dot represents the existence/absence 
of a gene in the partial genome of a single cell. Note that since these are partial genomes the 
absence of a gene may be due to the partiality rather than true absence. Genes were clustered 
using standard hierarchical clustering. Also note that the order of the genes in columns does not 
reflect location on the genome; the order is determined by the clustering (i.e. the similarity 
between the existence/absence pattern of genes). Bracketed sets of genes indicate genes that are 
differentially abundant in a pattern associated with a particular clade or clades. 
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Fig. S6. Schematic of fundamental components of the genomic backbones that define 
Prochlorococcus subpopulations. (A) The building blocks of Prochlorococcus diversity include 
hundreds of variants with distinct core gene alleles (shades of green) – produced by selection – 
and a pool of thousands of flexible gene cassettes. Both contribute to niche differentiation. (B) 
Each backbone is characterized by different alleles of core genes and a small distinct set of the 
same flexible genes. (C) Cells within a backbone-subpopulation – i.e. with shared backbones – 
are still observed to carry a few different environment-specific genes within genomic islands, 
contributing an additional level of variability.  (D) The composition of local populations is fine-
tuned to local conditions by adjustment of the relative abundance of hundreds of backbone-
subpopulations, reflecting their slightly different fitness, as well as variability in the genes they 
carry from the flexible gene pool. 
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Fig. S7. Average seasonal profiles at the Bermuda Atlantic Time-series Study (BATS) site 
indicating conditions when the three samples used in this study were collected. Shown are 
profiles of water temperature, surface light, nitrate+nitrite (NO3+NO2) and mixed layer depth. 
The graphs are smoothed curves (smoothed in a similar manner as in (17) of  average mixed 
layer depth, mean temperature in the top 100m, mean surface PAR (Photosynthetically Active 
Radiation)* (mol quanta m-2 d-1) and mean NO3+NO2 concentration  (µmol/kg) at the top 100m, 
over 10 years (1999-2009).* Light is averaged over the years (2004-2009). Data from 
http://bats.bios.edu/. 

http://bats.bios.edu/
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Fig. S8. Prochlorococcus, Synechococcus and pico-eukaryote abundance at Bermuda-
Atlantic Time-series Study (BATS) site indicating conditions when the three samples used 
in this study were collected. Shown are species abundance over 2008-2009 seasons. Data from 
http://bats.bios.edu/. Samples in the current study are marked as ellipses. Black solid line marks 
the mixed layer depth. 

http://bats.bios.edu/
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Fig. S9. Prochlorococcus traditional ecotype abundance over 2008-2009 seasons at 
Bermuda-Atlantic Time-series Study (BATS) site. Ecotype abundances are determined by 
qPCR. Samples in the current study are marked as ellipses. Black solid line marks the mixed 
layer depth.  
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Fig. S10. A schematic representation of the single cell pipeline applied in this study. (A) 
Sea-water samples are collected. (B)  Prochlorococcus is identified through flow cytometry 
based on light-scatter and autofluorescence, and sorted into 384-well plates (one cell per well). 
(C)  Whole Genome Amplification is performed using Multiple Displacement Amplification 
(MDA). (D)  Single cell Amplified Genomes (SAGs) are screened for the genetic marker(s) of 
choice (in this study the ITS region of the rRNA operon) using PCR followed by sequencing.  
(E)  Population structure is analyzed based on the ITS sequences, using multiple sequence 
alignment followed by phylogenetic analysis. (F)  Candidate cells for genome sequencing are 
selected. (G,H) A second amplification (using MDA) is performed on the selected SAGs, to 
obtain DNA for sequencing. (I) Barcoded DNA libraries are created and sequenced using 
Illumina technology. (J)  De novo assembly or referenced guided assembly of the sequence reads 
into genomes, followed by genetic analysis of the population. 
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Fig. S11. Histogram of the de novo assembly lengths of the 96 partial single cell genomes. 
The median length is ~1.3 million bp - equivalent to 78% of the estimated complete genome size 
of ~1.65 million bp. nt = nucleotides. 
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Fig. S12. Genetic differentiation of genes among clades cN2-C1 to cN2-C5. (A)  Mutual 
information of genes (based on nucleotide sequences). (B)  Distribution of mutual information 
values among core and flexible genes. (C)  Highest 5% mutual information values. (D)  FST vs. 
mutual information. (E)   Highest 5% FST values.  (F)  Mutual information vs. Average sequence 
distance. (G)  FST values based on amino-acid protein sequences vs. same values based on gene 
nucleotide sequences. 
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Fig. S13. Estimation of the error rate from single cell genomics based on a control 
experiment with eight clonal E. coli single cell genomes. (A) Whole-genome phylogentic tree. 
Neighbor joining with p-distance (computed in a similar manner to Fig. 2B in the main text) (B) 
Distribution of estimated pairwise genomic distances (#substitutions per bp).  (C) Distribution of 
mismatches along the reference genome (per 1Kb). (D) Abundance distributions of sites with 
mismatches along the genome  - similar to what expected by a Poisson distribution (E) 
Correlation coefficient between the abundance of sites with mismatches and distance between 
sites on the chromosome – indicating no apparent clustering.  
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Fig. S14. Coalescent simulations. (A) Median FST values vs. Θ. Error bars are SE from 5 
simulations. Dashed line is the observed median FST in our real genomic data. (B)   Same as in A 
but for median genomic distance between all genomes (Dall) and median genomic distance within 
backbone-subpopulations (Din). Dashed lines are the observed corresponding distances in our 
real data. The simulation data in Fig. 3B and Fig. S15 is for Θ=0.05, empirically found to yield 
the closest values of Dall and Din to those of the real data. Note that no choice of Θ, in the tested 
range, reaches the observed median FST. Θ values larger than 1 are expected to yield even 
smaller median values of FST than those of  Θ<1. 
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Fig. S15. A typical coalescent simulation of neutral evolution with Θ=0.05. This choice of Θ 
yielded similar average pairwise genetic distance to the observed ones (Fig. 2B). The simulations 
results in Fig. 3B and Fig. S15 are from this specific simulation. (A)  The resulted tree. Different 
colors mark the 5 clusters identified. (B)  Polymorphic sites within the five clades. (C)  
Abundance distributions of polymorphic sites along the genomes. (D,E), same as for B and C but 
for dimorphic sites between clusters.  
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Fig. S16. Observed and simulated (no selection) abundance distributions and correlations 
coefficient between sites. Dimorphic sites (per non-overlapping 1000bp) between clades cN2-
C1 and cN2-C3. (A) Abundance distributions of polymorphic and dimorphic sites along the 
genomes within and between C1 and C3, as well as typical distributions from coalescent 
simulations of neutral evolution (See section 6). (B) Correlation coefficient between sites 
abundance and distance between sites on the chromosome – indicating clustering that is not 
observed in coalescent simulations.   
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Fig. S17. FST distributions of different functional classes of single nucleotides. Classes are: 
Intergenic positions, Genic positions, and 1st, 2nd and 3rd codon bases. The fraction of positions 
with very low FST (<0.05) was significantly different between all pairs of nucleotide classes. The 
fraction of positions with very high FST (>0.95) was also different between all pairs of nucleotide 
classes. 
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Fig. S18. Changes in allele frequency within cells belonging to the cN2-C1 clade between 
seasonal samples. Shown are sites with significantly high mutual information positions 
(P<0.01). A few genes with such changes are marked. Note these sites are not dimorphic but are 
sites with a significant change in allele frequency (e.g. from 100% ‘A’s in one season to 60% 
‘A’s and 40% ‘C’s in the other season). 
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Fig. S19. Predicted Homologous Recombination (HR) within the 96 single cells. Each row 
represents a single cell genome. Yellow/white represents covered/missing site of each specific 
position in each partial genome. Other colors represent stretches of DNA predicted to be 
acquired through HR. Similar colors within the same position represent highly similar blocks 
(likely of same origin). Last row, stretches in red indicate the location of genomic islands. HR 
was predicted using the BratNextGen tool. 
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Fig. S20. Homologous recombination does not explain dimorphic SNPs. (A) Fraction of 
detected recombined sites within clades C1,C2 and C3 (cN2), per non-overlapping 1Kb (B) 
Dimorphic sites between pairs within clades C1,C2,C3. 
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Fig. S21. Genome synteny between clades cN2-C1 to cN2-C5. Shown is a multiple alignment 
of representative single cell partial genomes from each of the clades cN2-C1 to cN2-C5. Each 
clade is represented by one cell. Alignment was done by Mauve (64). The top genome is the 
cN2-C1 composite genome that serve as a reference, with the islands locations marked in gray 
above. The aligned genomes are from de novo assemblies. The different colored blocks are 
“Locally co-linear blocks” (LCBs) which are conserved segments that appear to be internally 
free from genome rearrangements. 
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Table S1. Flexible gene cassettes associated with different genomic backbones  

 
Clades Cassette 

ID 
COG ID Description Position 

cN2-C1, 
cN2-C4 
 

CST_I 17430 hypothetical protein 
 

Island 2.1 

82 Possible Cytochrome oxidase c subunit 
VIb 
 

5925 hypothetical protein 
high light inducible protein 
 

100193 

cN2-C1, 
cN2-C2 
 

CST_II 11507 Glycosyltransferase of PMT family Island 4 
5069 Glycosyltransferase 
2779 Sugar transferase 
3653 ABC-type multidrug transport system 

ATPase and permease components 
6172 glycosyl transferase; group 1 
14302 UDP-galactopyranose mutase (EC 

5.4.99.9) 
4701 predicted protein 
  
  

cN2-C3 
 

CST_III 51079 possible Glycosyl transferase  Island 1 
 59087 Glycosyl transferase family 11 

cN2-C4 
 

CST_IV 299 UDP-glucose dehydrogenase (EC 
1.1.1.22) 

Cassette 
island 4 
 1614 Glucose-1-phosphate 

thymidylyltransferase (EC 2.7.7.24) 
3209 dTDP-glucose 4,6-dehydratase (EC 

4.2.1.46) 
67595 hypothetical protein 
53203 hypothetical protein 
61572 HlpA protein 
68307 putative glycosyltransferase 
65350 hypothetical protein 
59677 glycosyltransferase 
3155 UDP-N-acetylmuramyl pentapeptide 

phosphotransferase/UDP-N-
acetylglucosamine-1-phosphat 
transferase 

56016 hypothetical protein 
52032 CpsL 
65878 Asparagine synthetase [glutamine-
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hydrolyzing] (EC 6.3.5.4) 
411 UDP-N-acetylglucosamine 4,6-

dehydratase (EC 4.2.1.-) 

cN2-C5 
 

CST_IV 61789 glycosyltransferase, group 1 Cassette 
Island 4 
Cassette 
Island 4 
 

48 UDP-glucose 4-epimerase (EC 5.1.3.2) 
45361 UDP-glucose dehydrogenase (EC 

1.1.1.22) 
72971 hypothetical protein 
67514 Glycosyltransferase 

c9301-C8 CST_VI 60774 conserved hypothetical protein Island 1 
66999 type II DNA modification 

methyltransferase 
66324 ulcer associated adenine specific DNA 

methyltransferas 
70558 hypothetical protein 

cN1-C9 
 
 

CST_IX 60426 putative rieske (2Fe-2S) family protein Island 5 
 35 Urea carboxylase-related ABC 

transporter, ATPase protein 
59708 Urea carboxylase-related ABC 

transporter, permease protein 
30352 Urea carboxylase-related ABC 

transporter, periplasmic substrate-
binding protein 

50117 [NiFe] hydrogenase nickel 
incorporation-associated protein HypB 

19523 [NiFe] hydrogenase nickel 
incorporation protein HypA 

62244 Agmatinase (EC 3.5.3.11) 
CST_VII 27390 Repeats containing protein Island 4 

 ? hypothetical protein 
64707 Glycosyl transferase, group 1 
1744 Mannose-1-phosphate 

guanylyltransferase (GDP) 
(EC2.7.7.22) 

? hypothetical protein 
57933 Glycosyltransferase 
13831 UDP-N-acetylglucosamine 2-

epimerase (EC 5.1.3.14) 
CST_VIII 29029 conserved hypothetical membrane 

protein 
Island 4 
 

1754 Glycosyltransferase 
57082 hypothetical protein 
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Table S2. Collected sample details.  

 
Sample Date Name Cruise  Depth Cells/ml 

(mean±SE) 

1 Nov 8th 2008   ‘autumn sample’ BATS 241 60m 41350±750 

2 Feb 8th 2009  ‘winter sample’ BATS 243 60m 33100±800 

3 Apr 1st 2009  ‘spring sample’ BATS 245a 60m 33000±1350 
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Table S3. Adapters and primers for Illumina libraries. 

 
Oligonucleotide for making adapters (no barcode in the insert) 

IGA-A0-down AGA TCG GAA GAG CGT CGT GTA GGG AAA GAG TGT AC/3AmM/ 

IGA-A0-up /5AmMC6/ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT 

IGA-PE-B0-down /5AmMC6/CTC GGC ATT CCT GCT GAA CCG CTC TTC CGA TCT 

IGA-PE-B0-up AGA TCG GAA GAG CGG TTC AGC AGG AAT GCC GAG /3AmM/ 

Oligonucleotide for PCR amplification 

IGA-PCR-PE-F AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT 

CCG ATC T 

Illumina sequencing barcoded primers (barcodes are in bold and the reverse complemented sequence 
is obtained) 

IGA-RACE-PCR-R64-b19 

CAA GCA GAA GAC GGC ATA CGA GAT CAGCTG CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b40 

CAA GCA GAA GAC GGC ATA CGA GAT TGAAGC CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b15 

CAA GCA GAA GAC GGC ATA CGA GAT GCACAT CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b11 

CAA GCA GAA GAC GGC ATA CGA GAT TCCCCT CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b35 

CAA GCA GAA GAC GGC ATA CGA GAT CTCCTC CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b61 

CAA GCA GAA GAC GGC ATA CGA GAT AACTAA CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b8 

CAA GCA GAA GAC GGC ATA CGA GAT TAGAGT CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b44 

CAA GCA GAA GAC GGC ATA CGA GAT GGTACC CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b54 

CAA GCA GAA GAC GGC ATA CGA GAT CTTGGA CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b29 

CAA GCA GAA GAC GGC ATA CGA GAT AGTTAG CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b49 

CAA GCA GAA GAC GGC ATA CGA GAT TAATTA CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b30 

CAA GCA GAA GAC GGC ATA CGA GAT TCTGAG CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b47 

CAA GCA GAA GAC GGC ATA CGA GAT GTGCAC CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b26 

CAA GCA GAA GAC GGC ATA CGA GAT ACAGCG CGG TCT  CGG CAT TCC TGC 

TGA AC 

IGA-RACE-PCR-R64-b9 

CAA GCA GAA GAC GGC ATA CGA GAT CTCTCT CGG TCT  CGG CAT TCC TGC 

TGA AC 
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IGA-RACE-PCR-R64-b51 

CAA GCA GAA GAC GGC ATA CGA GAT CGACTA CGG TCT  CGG CAT TCC TGC 

TGA AC 
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Table S4. Traditional ecotype abundance as estimated by single cell ITS-rRNA and qPCR. 

  Autumn sample Winter sample Spring sample 

Ecotype  Single cell 
ITS 

qPCR 
ecotypes 

Single cell 
ITS 

qPCR 
ecotypes 

Single cell 
ITS 

qPCR 
ecotypes 

e9312 #cells: 
 

Relative 
abundance

: 

35000±1000 46200±1400 23200±1000 32000±600 22400±1000 26100±4400 

 
92% ± 1% 

 
90% ± 3% 

 
81% ± 3% 

 
86% ± 2% 

 
78% ± 3% 

 
85% ± 14% 

eMED4 #cells: 
 

Relative 
abundance

: 

2700±100 4800±400 1500±100 3200±100 1450±100 3000±500 

 
7% ± 1% 

 
9% ± 1% 

 
6% ± 2% 

 
9% ± 1% 

 
5% ± 1% 

 
10% ± 2% 

eNATL #cells: 
 

Relative 
abundance

: 

100±100 5±5 3500±200 2000±200 4700±200 1600±200 

 
<%1 

 
<0.1% 

 
7% ± 1% 

 
5% ± 1% 

 
8% ± 1% 

 
5% ± 1 % 

eSS120 #cells: 
 

Relative 
abundance

: 

NA 65±10 NA 35±30 NA 50±10 

 
NA 

 
<0.1% 

 
NA 

 
<0.1% 

 
NA 

 
<0.1% 
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Table S5. Relative abundance of ITS-clusters as depicted from single cell data (Percent of 

whole population). 

ITS cluster Autumn sample Winter sample Spring sample 

cNATL 0.3%  ± 0.3% 7%  ± 1.1% 8% ± 1% 

cMED4 7.1% ± 0.3% 3.6% ± 0.8% 4% ± 0.6% 

cN1 6.6% ± 0.2% 9.7% ± 2.4% 9.2% ± 0.3% 

cN2 23.5% ± 1.6% 11.5% ± 2.2% 24.8% ± 1.9% 

c9301 20.6% ± 2.2% 17.5% ± 1.9% 13.9% ± 1.6% 
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Table S6. Relative abundance of cN2 C1-C5 clades. Percent of whole population 

(mean±SE). 

cN2 clade Autumn sample Winter sample Spring sample 

C1 14.4% ± 1.6% 3.3% ± 0.8% 17.8% ± 1.6% 

C2 1.5% ± 0.9% 0.9% ± 0.3% 1.3% ± 0.4% 

C3 2.9% ± 0.8% 2.8% ± 0.7% 4.3% ± 1.1% 

C4 0.8% ± 0.5% 1.5% ± 0.2% 0.3% ± 0.2% 

C5 0.4% ± 0.4% 0.4% ± 0.2% 0.2% ± 0.2% 
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Table S7. Number of whole-genome sequenced single cells within ITS-clusters and clades 

ITS-

cluster 

Clade Autumn  

sample 

Winter 

sample 

Spring 

sample 

 

 

cN2 

 

C1 19 14 20 

C2 2 4 2 

C3 4 4 5 

C4 1 2 1 

C5 1 1 1 

Other 2 5 1 

c9301 C8 2 1 1 

cN1 C9 1 1 1 

Total  32 32 32 
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Table S8. De novo assembly statistics. Genomes were de novo assembled using CLCbio 

assembler. A median assembly size of 1.3 million bp reflects a median genome recovery of 

~78% (assuming a complete genome size of 1.65 million bp). 

  Percentiles  

 
25% 50% 75% 

Assembly size (million bp)  1.1 1.3 1.5 

No. of contigs  180 280 350 

N50  (bp)  50,000 75,000 115,000 

Average contig length (bp)  3300 4500 6300 

Largest contig (bp) 110,000 190,000 290,000 
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Table S9. Genomic islands  

 
Island Position on cN2-C1  

composite genome 
No. of 
genes 

No. of  
non-core genes 

ISL1 341529-361790 33 28 
ISL2 639080-700682 104 73 

ISL2.1 936188-956506 37 32 
ISL3 1085348-1113669 64 44 
ISL4 1170430-1222632 43 38 
ISL5 1325898-1359593 68 49 
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Table S10. Polymorphic sites (bp) within clades   
 Shared polymorphic 

positions between 
clades 

Total No. of 
Polymorphi
c positions 
within 
clades 

Clade-
Unique 
Polymor
phic 
sites 

Putatively 
recombine
d positions 
within- 
clade 

Polymorph
ic and 
putatively 
recombine
d positions  

Clade C2 C3 C4 C5     
C1 2531 3376 1417 943 14295 8907 206341 4416 

C2  1777 982 582 10285 6799 65749 1763 
C3   1748 902 18643 13512 31162 604 
C4    446 8695 5812 7989 159 
C5     8448 6776 17022 330 

 



 
 

60 
 

  
Table S11. Estimation of the number of substitutions and insertions/deletions of clonal E. 
coli single cell genomes (per 100Kb) with respect to a reference genome. SAG = single 
amplified genome. 

 
 SAG Substitutions Insertions/Deletions Sites 

Recovered 

(Kb) 

Substitutions 

per 100Kb 

Indels 

per 100Kb 

1 NNXC 28 15 844 3.3 1.8 

2 NNXU 74 26 1391 5.3 1.9 

3 NNYC 49 20 1460 3.3 1.3 

4 NNYG 75 28 2309 3.2 1.2 

5 NNZG 71 25 2215 3.2 1.1 

6 NNZH 58 19 1573 3.5 1.1 

7 NPYP 78 24 2045 3.8 1.1 

8 NPZA 54 11 1306 4.1 0.8 

 Mean±SD   1655±505 3.7±0.7 1.3±0.3 
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Table S12. Estimation of pairwise differences between clonal E. coli single cell genomes 
(per 100Kb). SAG = single amplified genome. 

 
 SAG 

(cell) 

1 2 3 4 5 6 7 8 

1 NNXC         

2 NNXU 6.2        

3 NNYC 6.2 9.1       

4 NNYG 4.3 6.2 3.6      

5 NNZG 3.4 6.1 4.2 3.6     

6 NNZH 6 7.1 4.8 3.8 4.4    

7 NPYP 3.7 6.7 4.3 4.0 4.0 4.7   

8 NPZA 4.9 6.0 5.6 4.3 3.9 5.8 5.7  

 Mean±SD 5.1±1.4        
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Table S13. Examples of gene cassettes shared by a few closely related cells (subclades) 
within backbone-subpopulations 
Clade Cells in 

Subclade 
No. of 
genes 

Genes (partial list) System/Function Position 

cN2-C1 
 

518D8, 
527P5, 
528K19, 
521B10, 
521O20, 
519O11, 
527L16, 
495N16 

21 twin-arginine 
translocation pathway 
signal sequence; Leader 
peptidase (Prepilin 
peptidase) (EC3.4.23.43); 
general secretion pathway 
protein H; possible 
general (type II) secretion 
pathway protein D 
precursor,  Type IV 
fimbrial assembly; 
ATPase PilB, Twitching 
motility protein PilT; 
Type II secretory 
pathway, component PulF 
/ Type IV fimbrial 
assembly protein PilC; 

Type II secretion 
and type IV pilus 

Island 2 

cN2-C1 495N4, 
528N8, 
521N3 

4 Methyltransferase FkbM; 
Glucose-1-phosphate 
thymidylyltransferase (EC 
2.7.7.24);  
 

nucleotide sugar 
precursor 
synthesis 

Island 4 

cN2-C1 529J11 
518E10 

40 polysaccharide export-
related periplasmic 
protein; Arabinose 5-
phosphate isomerase (EC 
5.3.1.13); Asparagine 
synthetase [glutamine-
hydrolyzing]  (EC 
6.3.5.4); glycosyl 
transferase; Glucose-1-
phosphate 
cytidylyltransferase 
(EC2.7.7.33); Bacterial 
sugar transferase 

Polysaccharide 
biosynthesis and 
export 

Island 4 

cN2-C2 498B22, 
498N8, 
496G15 

12 Possible Natural 
resistance-associated 
macrophage Protein 
(Nramp); high light 
inducible protein-like; 
possible Ribosomal RNA 
adenine dimethylase; 

Membrane surface  
modification 
(possibly related 
to phage 
resistance) 

Island 5 
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Putative phosphatase  
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Additional file Data S1 
Gene-by-gene FST values for all genes in the cN2-C1 composite genome (Excel table).  
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