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Red seaweeds are key components of coastal ecosystems and are
economically important as food and as a source of gelling agents,
but their genes and genomes have received little attention. Here
we report the sequencing of the 105-Mbp genome of the florideo-
phyte Chondrus crispus (Irish moss) and the annotation of the 9,606
genes. The genome features an unusual structure characterized
by gene-dense regions surrounded by repeat-rich regions domi-
nated by transposable elements. Despite its fairly large size, this
genome shows features typical of compact genomes, e.g., on
average only 0.3 introns per gene, short introns, low median
distance between genes, small gene families, and no indication
of large-scale genome duplication. The genome also gives
insights into the metabolism of marine red algae and adapta-
tions to the marine environment, including genes related to hal-
ogen metabolism, oxylipins, and multicellularity (microRNA pro-
cessing and transcription factors). Particularly interesting are
features related to carbohydrate metabolism, which include
a minimalistic gene set for starch biosynthesis, the presence of
cellulose synthases acquired before the primary endosymbiosis
showing the polyphyly of cellulose synthesis in Archaeplastida,
and cellulases absent in terrestrial plants as well as the occurrence
of a mannosylglycerate synthase potentially originating from a
marine bacterium. To explain the observations on genome struc-
ture and gene content, we propose an evolutionary scenario in-
volving an ancestral red alga that was driven by early ecological
forces to lose genes, introns, and intergenetic DNA; this loss was

followed by an expansion of genome size as a consequence of
activity of transposable elements.

The red algae, together with the glaucophytes and the Chlor-
oplastida, are members of the Archaeplastida, the phyloge-

netic group formed during the primary endosymbiosis event
that gave rise to the first photosynthetic eukaryote. Red algal
genomes, both plastid and nuclear, also contributed, via secondary
endosymbiosis, to several other eukaryotic lineages, including

Author contributions: J.C., B.P., T.T., G.M., B.N., K.V., J.-M.A., J.H.B., F.-Y.B., J.M.C., B.K.,
C.L., P.W., and C.B. designed research; J.C., B.P., W.C., S.G.B., C. Chaparro, T.T., T.B., G.M.,
B.N., K.V., M.E., F.A., A.A., J.-M.A., J.F.B.-N., J.H.B., F.-Y.B., L.B., F.C.-H., S.C.-G., B.C., L.C.,
J.M.C., S.M.C., C. Colleoni, M.C., C.D.S., L.D., F.D., P.D., S.M.D., T.G., C.M.M.G., A.G., C.H.,
K.J., M.K., N.K., K.L., C.L., P.J.L., A.M., O.P., F.P., J.P., S.A.R., S.R., G.S., J.W., A.Z., P.W., and
C.B. performed research; B.P. and W.C. contributed new reagents/analytic tools; J.C., B.P.,
W.C., S.G.B., C. Chaparro, T.T., T.B., G.M., B.N., K.V., M.E., F.A., A.A., J.-M.A., J.F.B.-N.,
J.H.B., F.-Y.B., L.B., F.C.-H., S.C.-G., B.C., L.C., J.M.C., S.M.C., C. Colleoni, M.C., C.D.S., L.D.,
F.D., P.D., S.M.D., T.G., C.M.M.G., A.G., C.H., K.J., M.K., B.K., N.K., K.L., C.L., P.J.L., D.H.M.,
L.M.-C., A.M., Z.N., P.N.C., O.P., F.P., J.P., S.A.R., G.S., A.S., J.W., A.Z., P.W., and C.B.
analyzed data; and J.C., S.G.B., T.T., T.B., G.M., M.E., and C.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The sequences reported in this paper have been deposited in the EMBL
database (sequence nos. CAKH01000001–CAKH01003241).
1To whom correspondence should be addressed. E-mail: collen@sb-roscoff.fr.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1221259110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1221259110 PNAS | March 26, 2013 | vol. 110 | no. 13 | 5247–5252

PL
A
N
T
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

F
eb

ru
ar

y 
22

, 2
02

1 

http://www.ebi.ac.uk/ena/data/view/CAKH01000001
http://www.ebi.ac.uk/ena/data/view/CAKH01003241
mailto:collen@sb-roscoff.fr
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221259110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221259110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1221259110


stramenopiles, alveolates, cryptophytes, and haptophytes (1),
and thus genes of red algal origin are spread widely among the
eukaryotes. Knowledge about red algal genes and genomes
therefore is crucial for understanding eukaryote evolution. The
red macroalgal fossil record stretches back 1.2 billion years,
providing the oldest evidence of morphologically advanced,
multicellular, sexually reproducing eukaryotes (2). Ecologically,
red algae represent the most species-rich group of marine mac-
rophytes with more than 6,000 described species (www.algaebase.
org). They are important components of many marine ecosys-
tems, including rocky intertidal shores and coral reefs, and also
are present in fresh water (3). Red algae also show some unusual
physiological traits. Their photosynthetic antennae are built with
phycobiliproteins, the thylakoids are unstacked, and they totally
lack flagella and centrioles. In contrast to Chloroplastida, which
produce starch in their chloroplasts, red algae store carbon as
starch granules in their cytosol (floridean starch) (3). Their cell
wall is a complex assemblage of cellulose, various hemicelluloses,
and unique sulfated galactans (agars and carrageenans) (4).
Economically, red macroalgae are important for their poly-
saccharide content. For example, carrageenans, the main sulfate-
containing compounds in many red algae, are used as texturing
agents and had a market value of more than US$500 million in
2010 (5). Red algae, especially nori (Pyropia and Porphyra spe-
cies), also are used directly for human consumption with a market
value of ∼US$1,300 million/y (6).
A number of transcriptomic studies are available on red algae,

including the genera Porphyra, Chondrus, and Gracilaria (see ref.
7 and references therein), which investigate developmental
processes and physiological responses and establish the contri-
bution of red algae to diverse evolutionary lineages via secondary
endosymbiosis events. However, red macroalgae have been the
last group of complex multicellular organisms lacking a high-
quality reference genome sequence. The closest fully sequenced
relative of the red macroalgae is the unicellular extremophile
Cyanidioschyzon merolae, which has a reduced genome (8) and
belongs to the Cyanidiales, a group that diverged from other red
algae about 1.4 billion years ago (1).
In the present study, we analyze the genome of Chondrus crispus

Stackhouse (Gigartinales), or Irish moss, an intertidal red sea-
weed, up to 20 cm long, found on rock shores in the northern
Atlantic Ocean. Chondrus is a member of the florideophytes, the
largest group of extant red algae, representing 95% of known
species (3). It is a common seaweed with a typical red algal tri-
phasic life history with easy access to all three life cycle phases: the
haploid female and male gametophytes, the diploid tetraspor-
ophyte, and the diploid carposporophyte (present on the female
gametophyte). The cell wall contains carrageenan, typically with ι-
and κ-carrageenan in the gametophyte and λ-carrageenan in the
sporophyte. In contrast to most other red algae, important sci-
entific background knowledge exists for Chondrus, including
studies on the mitochondrial genome (9), transcriptomics (10, 11),
interactions with pathogens (12), effects of UV radiation (13),
stress metabolism (14), and population ecology (15, 16). Thus, the
availability of the C. crispus genome should help promote this
organism as a model species for florideophyte algae and shed light
on key aspects of eukaryotic evolution.

Results and Discussion
Reduced Genome with Exceptionally Compact Clustered Genes. The
genome sequence was obtained using DNA purified from a
clonally growing unialgal culture of a gametophyte of Chondrus
crispus and was sequenced using the Sanger technology. The
assembled nuclear genome of Chondrus contains 1,266 scaffolds
totaling 105 Mbp. A combination of expert and automatic an-
notation predicts 9,606 genes. The results of the annotation are
described in detail in the SI Appendix. Genes are remarkably
compact, containing only 1.32 exons on average (i.e., many fewer
than other organisms of similar genome size), and most genes
(88%) are monoexonic (Fig. 1A). The sparse introns are small,
with an average length of 182 nucleotides (Table 1). The intron

content of Chondrus and its distant relative C. merolae, as well as
the limited data available on the gene structure of other red
algae (17), suggest that compact genes are typical for this group
and thus possibly are an ancestral trait. It is worth noting that the
nucleomorphs of red algal origin in cryptomonads also have low
intron content (18). Although we cannot exclude the possibility
that a massive loss of introns could have occurred after the
secondary endosymbiotic event, this observation suggests that
the ancestral endosymbiotic red alga, which gave rise to these
nucleomorphs, also had few introns. There is increasing evidence
that the last eukaryotic common ancestor was intron rich and
that there have been both intron losses and intron gains in the
evolution of eukaryotes (19). The low number of introns in red
algae thus would be a secondary feature that arose after the split
between the green and red lineages about 1.5 billion years ago
(1). The few introns that are present in Chondrus possibly have
a regulatory function because, on average, transcripts for intron-
containing genes accumulated to higher levels than those of
monoexonic genes (SI Appendix, Fig. S1.1B). This result is in line
with previous observations in other eukaryotes (20, 21).
Genes in Chondrus are clustered in gene-dense regions in-

terspersed with sequences containing numerous repetitive ele-
ments. As a result, we observed a low median distance (0.8 kbp)
between genes compared with the average distance (6.9 kbp).
The ratio between average and median intergenic distances in
different eukaryotes makes it clear that Chondrus presents an
exceptionally low gene density and a high degree of clustering
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Fig. 1. Structural features of the Chondrus crispus (Cc) genome. (A) Per-
centage of genes with introns as a function of genome size in selected
eukaryotes. (B) Gene density as a function of clustering in selected eukar-
yotes. Species: Ostreococcus lucimarinus (Ol), Cyanidioschyzon merolae (Cm),
Micromonas pusilla (Mp), Saccharomyces cerevisiae (Sc), Phaeodactylum tri-
cornutum (Pht), Leishmania major (Lm), Thalassiosira pseudonana (Tp), Phy-
tophthora ramorum (Pr), Paramecium tetraurelia (Pt), Phytophthora sojae (Ps),
Caenorhabditis elegans (Ce), Chlamydomonas reinhardtii (Cr), Arabidopsis
thaliana (At), Ectocarpus siliculosus (Es),Oryza sativa (Os), Physcomitrella patens
(Pp), Vitis vinifera (Vv), Sorghum bicolor (Sb), Gallus gallus (Gg), Danio rerio
(Dr), Zea mays (Zm), Homo sapiens (Hs). Green symbols indicate chloroplastides;
red, rhodophytes; blue, opisthokonts; brown, stramenopiles; and black, others.
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(Fig. 1B). The proximity of coding ORFs is enhanced by short
untranslated regions (on average 142 bp). Although different in
size, the C. merolae and Chondrus genomes are similar in that they
are regionally compact with few introns and a limited number of
genes compared with other eukaryotic species (Table 1). There-
fore it is possible that red macroalgae (and other non-Cyanidiales
red algae) share with C. merolae a common ancestor that had a
reduced genome and that the expansion of the size of the mac-
roalgal genome [red macroalgal genome sizes are 80–1,200 Mbp
(22)] occurred after the separation from Cyanidiales.

Recent Genome Expansion Resulting from Transposable Element
Invasion. Repeated sequences constitute 73% of the Chondrus
genome. The most abundant transposable elements are class I
LTR retrotransposons, representing 58 Mbp; non-LTR retro-
elements were found also. Twenty-one families of terminal
inverted repeat elements (class II elements), representing 13
Mbp of the genome, were found, as was one active helitron
family. The retrotransposon component of the genome is ex-
tremely complex, not only because of the enormous number of
recently transposed elements but also because each family has
members that have diverged significantly. The analysis showed
evidence for an ongoing burst of transposition activity that is
responsible for at least 18 Mbp of the genome. The histogram of
the similarity between LTRs shows a unimodal distribution, in-
dicating that the transposition of all elements occurred con-
comitantly and is very recent (SI Appendix, Fig. S2.3). The mean
similarity is 98%, with well over 100 elements exhibiting identical
LTRs. The sizes of the copia and gypsy reference elements also
are remarkably similar, suggesting a low rate of occurrence of
insertions/deletions. Together these results indicate that LTR
retroelements have been a major driving force in shaping the
genome of Chondrus and that their proliferation has increased
the genome size significantly in the last 300,000 y (SI Appendix,
Fig. S2.3).

Reduced Gene Content. In agreement with the compact structure
of its genome, there are many examples of reduced gene diversity
in Chondrus. For example, we did not find typical and wide-
spread eukaryotic genes such as those for selenoproteins, the
machinery for DNA methylation, sulfatases, core components of
the endocytic machinery (Rab5 GTPase, AP-2 adaptor complex,
endocytic Qc-SNARE), heterotrimeric G proteins, or flagella-
specific genes (red algae lack flagella in all life cycle phases). In
addition, and surprisingly for a photosynthetic organism, only
one photoreceptor was found, a cryptochrome, and Chondrus
therefore seems to lack most of the photoreceptor types known
to date, including aureochromes, phytochromes, rhodopsin, or
phototropins. Furthermore, most gene families are small, with
few paralogs involved in a given functional process. For example,
Chondrus encodes 82 genes for cytoplasmic ribosomal proteins,
compared with 349 in Arabidopsis thaliana, even though nearly
all ribosomal protein types are present in Chondrus (SI Appendix,
Table S4.8). Starch metabolism is another example of the use of
a minimum set of genes for a function (see below). The number

of transcription factors and transcriptional regulators encoded
also is small: 193 proteins, compared with 161 in the unicellular
red alga C. merolae, 401 in the multicellular brown alga Ecto-
carpus siliculosus, which has similarly complex morphology, and
more than 1,500 in the morphologically more complex embryo-
phyte A. thaliana (23). Even though the number of transcription
factors is limited, it is worth noting that both Dicer and Argo-
naute, genes, which are involved in small RNA processing (24),
are found in the genome. Argonaute genes have not been de-
scribed in unicellular red algae, glaucophytes, or most prasino-
phytes, and Dicer cannot be detected in any other red, green, or
unicellular heterokont algae (23). This observation suggests
a complex regulation by miRNAs in Chondrus, comparable to
that found in multicellular plants and animals.
Taken together, these findings prove that pathway simplifica-

tion, along with gene and intron losses, is ancestral to rhodo-
phytes and not derived in Cyanidiales and other unicellular red
algal lineages.

Large Unexplored Gene Diversity. This study provides an insight
into the large number of hitherto unknown genes found in
Chondrus, i.e., the 52% of genes that had no counterpart (blastp
e-value >10−5) in GenBank. The predicted proteins in the
Chondrus genome were compared with the 5,064 proteins from
C. merolae (25), the 23,961 predicted proteins of Calliarthron
tuberculosum (26), and the 839 proteins of Pyropia (Porphyra)
yezoensis present in GenBank. This set of proteins was com-
pleted with 22,431 ESTs of P. yezoensis and 36,167 ESTs of
Porphyridium cruentum (26) (for details, see SI Appendix). As

Table 1. Genome statistics from C. crispus and selected photosynthetic species

Species Genome size (Mbp) Protein-coding loci % coding Introns per gene Average intron length (bp)

C. crispus 105 9,606 8 0.32 123*
Cyanidioschyzon merolae 16.5 5,331 50 0.005 248*
Arabidopsis thaliana 140.1 27,416 24 4.4 55*
Physcomitrella patens 480 35,938 9 3.9 311*
Chlamydomonas reinhardtii 121 14,516 16 7.4 174*
Ectocarpus siliculosus 214 16,281 12 7.0 704†

Thalassiosira pseudonana 34 11,242 32 1.4 132†

Ostreococcus lucimarinus 13.2 7,551 71 0.27 187*

*Median.
†Mean

1,987

2,009
4,456

26,287

5031,183

239

Cyanidioschyzon merolae

Chondrus crispus

Calliarthron tuberculosum,
Porphyridium cruentum,
Porphyra yezoensis

Fig. 2. Orthology groups within red algal protein-coding genes. The Venn
diagram shows the ortholog groups identified within the genomes of
C. crispus and Cyanidioschyzon merolae and within the available sequences of
Calliarthron tuberculosum, P. cruentum, and Pyropia (Porphyra) yezoensis.
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shown in Fig. 2, 57% of Chondrus orthology groups were not
found in other red algae, demonstrating large gene diversity even
within this lineage.

Unique Carbohydrate Metabolism. The Chondrus genome contains
31 glycoside hydrolases (GH) and 65 glycosyltransferases
(GT) belonging to 16 GH and 27 GT families, respectively (SI
Appendix, Table S7.13). These enzymes are involved in cell-wall
metabolism and in the synthesis of other polysaccharides as well
as protein and lipid glycosylation. Chondrus features all the genes
needed to synthesize and recycle starch (SI Appendix, Table
S7.14) but with a surprisingly low redundancy. The finding of only
12 starch-related genes revolutionizes our understanding of the
building of this important polymer. Indeed, until very recently
it was assumed that the complexity of starch metabolism in the
green lineage reflected the complexity of the structure of
starch granules. The Chondrus genome clearly invalidates this
hypothesis.
One gene homologous to family GT7 chondroitin synthase

and nine genes similar to carbohydrate sulfotransferases (CSTs)
were identified. These enzymes are involved in the biosynthesis
of sulfated polysaccharides, glycosaminoglycans, in animals,
suggesting that their Chondrus homologs are involved in carra-
geenan biosynthesis. CSTs also are conserved in brown algae but
are absent in available genomes of terrestrial plants. The clus-
tering of red algal CSTs with those of animals and brown algae
(SI Appendix, Figs. S7.3–S7.5) confirms that the synthesis of
sulfated polysaccharides is an ancient eukaryotic capacity which
has been lost by plants during the conquest of land (27). In ad-
dition, Chondrus possesses 12 galactose-6-sulfurylases, which are
responsible for the last step of carrageenan biosynthesis and are
unique to red algae (28), and three GH16 enzymes related to
κ-carrageenases from marine bacteria (29), which putatively are
involved in cell-wall expansion and recycling.
Chondrus contains two cellulose synthases (CESA) similar to

those of the red algae Porphyra sp. (55% identity) and Griffithsia
monilis (62% identity). Like the CESA from G. monilis, the
Chondrus CESAs display a CBM48 in N terminus (30). In a Blast
search against the NR database, the closest homologs of red
algal sequences are CESA from Oomycetes (∼35% identity),
from Dictyostelium spp. (∼30% identity), and from various bac-
teria (∼28% identity). In contrast, CESA from land plants are
more distant (∼20% identity). A phylogenetic analysis with the
bacterial CESAs as outgroup indicates that CESA and cellulose
synthase-like proteins (CSL) from Chloroplastida diverge into
two unrelated clades (Fig. 3). The first clade encompasses CESA
and CLSB, D, E, F, G, and H and likely derived from the single
cellulose synthase of charophytes. The second clade, which
includes CSLA and CSLC, originates from a CSL from chlor-
ophytes which is not found in the transcriptomes of charophytes
(31). Red algal CESA emerge together with CESA from oomy-
cetes in a distinct cluster rooted by CESA from Amoebozoa,
confirming the tendency observed in blastp searches. Therefore,
the CESAs from red algae and from green algae and embry-
ophytes have different origins. Amoebozoa were not involved in
the primary plastid endosymbiosis; thus acquisition of the bacte-
rial cellulose synthase likely occurred before the primary endo-
symbiosis, and is not necessarily of cyanobacterial origin (32, 33).
The nature of the different ancestral bacteria involved in horizontal
gene transfer (HGT) with red algae and green algae is difficult to
resolve, because all bacterial cellulose synthesis A (bCsA) genes
tend to cluster together in an unrooted tree. Chondrus lacks family
GH9 cellulases, which are found in land plants. In contrast, the
genome contains three other families of cellulases (GH5, GH6,
and GH45), which are absent in Chloroplastida but are conserved
in various bacteria and heterotrophic eukaryotes. Phylogenetic
analyses confirm that the GH5 cellulases emerge in a clade en-
compassing cellulases from oomycetes, Amoebozoa, and Nem-
atoda, whereas red algal GH45 cellulases are related to cellulases
from fungi (Fig. 3). GH6 cellulases from Chondrus are conserved
both in bacteria and fungi but seem closer to bacterial GH6

cellulases. Because at least the red algal GH5 and GH45 cellu-
lases share common ancestors with cellulases from opisthokonts
or Amobozoa, these proteins are ancient eukaryotic enzymes
predating the primary plastid endosymbiosis. Thus, these an-
cestral cellulases probably were involved initially in the degra-
dation of bacterial cellulose. After the acquisition of the cellulose
biosynthetic pathway, these red algal enzymes likely evolved to
participate in cell-wall remodeling.

Unusual Metabolic Features. Because of their evolutionary history
and their habitat, red algae feature some uncommon enzymes
related to primary and secondary metabolism. As an illustration,

Fig. 3. Phylogenetic trees of the cellulose synthases CESA and cellulose syn-
thase-like proteins CSL (family GT2) and of the cellulases of the GH5 and GH45
families. All phylogenetic trees were constructed using the maximum likeli-
hood (ML) approach with the program MEGA 5.05 (www.megasoftware.net).
Numbers indicate the bootstrap values in the ML analysis.
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the Chondrus genome contains a gene similar to the mannosylgly-
cerate synthase (MGS) from the marine bacterium Rhodothermus
marinus (48% identity) and from some Archaea (∼29% identity).
This family GT78 enzyme synthesizes mannosylglycerate, an
osmolyte required for thermal adaptation in thermophilic
microorganisms (34, 35). This rare compound is known in red
algae as “digeneaside” and accumulates during photosynthesis
(36). MGS are not found in the available genomes of glauco-
phytes, green algae, or land plants, with the exception of Phys-
comitrella patens and Selaginella moellendorffii. Nonetheless, we
have identified GT78 homologs in transcriptomic data of five
other red algae and five streptophyte algae. A phylogenetic
analysis indicates that the GT78 sequences from red algae,
streptophytes, mosses, and lycophytes constitute two distinct
clades, rooted by the MGS from R. marinus (SI Appendix, Fig.
S7.2). Thus, there was a lateral transfer between a common an-
cestor of green and red algae with a thermophilic marine bacte-
rium. Most extant red algae retained this enzyme; in the green
lineage this gene was lost early by chlorophytes, but it was con-
served by streptophytes, mosses, and lycophytes. It finally was lost
by land plants after the divergence from lycophytes.
Several sets of anabolic and catabolic reactions previously

considered specific to plants or animals were found in Chondrus.
This result raises intriguing questions about the biological roles
and the regulation of the related genes, molecules, and metabolic
pathways, in particular whether their functions and mechanisms
of action are conserved across different lineages. Examples are
the C18 (plant-like) and C20 (animal-like) oxylipins and related
compounds that have been identified in Chondrus in the context
of studies on biotic stress response (28, 29). Interestingly, only
two genes encoding lipoxygenase (SI Appendix, Table S7.10) have
been identified, a surprising result given the diversity of oxylipins
observed in this alga. The presence of methyl jasmonate, a plant
hormone involved in stress signaling, has been detected in vitro
after incubation with linolenic acid (37, 38). However, no candi-
dates for allene oxide synthase, allene oxide cyclase, or jasmonic
acid carboxyl methyltransferase were found. This outcome indi-
cates that methyl jasmonate and oxylipin synthesis in Chondrusmay
be carried out by enzymes other than the ones characterized so far.
Despite the overall reduced genome, a number of gene families

have remained diverse or were subject to recent diversification and
expansion. One example of this diversity is the comparatively large
set of genes related to halogen metabolism. Halogens play an
important role in the metabolism of marine red algae (9), and
transcriptomic data indicate that the corresponding genes are
highly expressed (S1 Appendix, Table S8.1). For example, 20 genes
encoding animal-like heme peroxidase homologs were identified
(SI Appendix, Fig. S8.4). In mammals these genes play a major role
during pathogen ingress, releasing hypohalous acids (39), but their

function in red algae is unknown. To our knowledge, animals and
marine bacteria are the only groups of organisms in which this
type of protein has been found. Their occurrence in Chondrus
provides additional evidence for the hypothesis that proteins from
the peroxidase-cyclooxygenase superfamily (such as heme perox-
idases) have an ancient origin (40). In addition, the Chondrus
genome encodes 15 members of the phosphatidic acid phospha-
tase type 2-haloperoxidase family. Interestingly, it also harbors
a group of haloalkane dehalogenase and haloacid dehalogenase
enzymes, which remove halogens from alkanes. This group of
enzymes previously has been found only in prokaryotes and in the
brown seaweed E. siliculosus (41). The large size of these halogen-
related gene families likely is a specific evolutionary adaptation to
the marine environment, allowing brown and red macroalgae to
take benefit of halide chemistry and to modulate finely halogen
metabolism, which plays an important role in defense reactions,
redox reactions, and the production of secondary metabolites.
Supporting this hypothesis are the facts that E. siliculosus has
a similarly rich repertoire of peroxidases and haloperoxidases, with
∼16 representatives (41), and that brown algae in general have an
active halogen metabolism (42).

Evolutionary Scenario. The Chondrus genome sheds lights on the
early evolution of Archaeplastida. The presence of cellulase
families GH5 and GH45 in Chondrus supports the notion that the
ancestor of the Archaeplastida was a cellulolytic protist feeding
on bacterial exopolysaccharides such as cellulose. This hypoth-
esis is consistent with the ancient eukaryotic origin of family
GH9 cellulases (43). After their divergence, red algae only kept
GH5 and GH45 cellulases, and green algae and plants lost these
genes and conserved GH9 cellulases. Repeated exposition to
bacterial genomic DNA also could explain the HGTs of various
bacterial origins found in the Chondrus genome (e.g., GT2,
GT78). Cellulose biosynthesis was acquired independently in red
algae and green algae; independent acquisition could partially
explain the structural diversity of cellulose-synthesizing enzyme
complexes and cellulose microfibrils in Archaeplastida (44).
The compact structure of the nonrepetitive part of the Chondrus

genome and genes also indicates that the red algal lineage went
through an evolutionary bottleneck (Fig. 4). Early in the evolution
of red algae, but after their divergence from green algae, selective
pressure for small physical size or low nutrient requirements
probably caused a reduction of the genome, with loss of introns
and intergenetic material. This bottleneck also could explain the
lack of flagella in all life-cycle stages in red algae, because the
corresponding genes may have been lost during the genome
compaction. It has been suggested previously (45) that, because
of the limited low pH tolerance of cyanobacteria, early eukaryotic
algae would have had less competition in acidic environments
where fewer photosynthetic organisms were present. The extant
red algae C. merolae or Galdieria sulphuraria live in an envi-
ronment with high temperature and low pH, and even though it
is not obvious why such conditions would reduce genome size, it
is clear that these conditions favor compact genomes in red algae
and may indicate that the ancestral red alga was an acido- and
thermophilic organism. The evolutionary bottleneck also might
explain the high number of orphan genes in the genome, because
red algae were forced to reinvent gene functions that were lost
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Fig. 4. Proposed scenario for the evolution of red algae. An ancestor with
flagella and an intron-rich genome invaded an extreme environment, possibly
acidic and high temperature, with a strong selection pressure toward a re-
duced genome, where a genome reduction took place. The red algae later
recolonized the marine and freshwater environments and experienced an
expansion of the genome through the activity of transposable elements. They
now are represented by the florideophytes and the bangiophytes (red algae
that are neither Cyanidiales nor florideophytes). Red ovals represent plastids;
light blue circles, nucleus with ancestral genes; yellow, transposable elements.
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Fig. 5. Snapshot of the C. crispus genome analysis and an outline of the
contents of the SI Appendix.
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during the genome reduction. If this hypothesis is correct, we
predict that the ongoing red algal genome projects on Porphyra
spp (6), P. cruentum (46), and C. tuberculosum (47) will show
similar gene and genome organization.
In conclusion, this study presents a reference genome for

a multicellular red alga and provides a number of unexpected
insights into the origin and evolution of this ancestral plant lin-
eage. It also provides fundamental data on the unique metabolic
pathways of this large and economically important group of
marine algae. In addition, because of its unique genome char-
acteristics, C. crispus constitutes a novel model species for
studying the complex evolutionary forces that shape eukaryotic
genomes. Finally, as an archive of the gene content of ancestral
marine plants, this genome will help comparatively delineate the
innovations that were necessary for the emergence of land plants
and their adaptation to the terrestrial environments.

Materials and Methods
A gametophyte of C. crispus Stackhouse (Gigartinales) was collected at Peggy’s
Cove, Nova Scotia, Canada (44°29′31′′N, 63°55′11′′W) in 1985 by Juan Correa
and since then has been growing vegetatively in unialgal culture.

The main raw data are 14-fold coverage shotgun reads sequenced with
Sanger sequencing produced from five libraries with various insert sizes
(SI Appendix, Table S1.1). Their assembly with ARACHNE (48) generated
a collection of 925 scaffolds, covering 104.8 Mbp. An automated annota-
tion based partially on 300,000 cDNA reads was performed and was used
as a basis for expert annotation. For details on the different analyses and
available data, see SI Appendix. An outline of SI Appendix content is
shown in Fig. 5.
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