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Emiliania huxleyi and Gephyrocapsa oceanica are
abundant coccolithophore morpho-species that play
key roles in ocean carbon cycling due to their
importance as both primary producers and cal-
cifiers. Global change processes such as ocean
acidification impact these key calcifying species. The
physiology of E. huxleyi, a developing model species,
has been widely studied, but its genetic delineation
from G. oceanica remains unclear due to a lack of
resolution in classical genetic markers. Using
nuclear (18S rDNA and 28S rDNA), mitochondrial
(cox1, cox2, cox3, rpll6, and dam), and plastidial (16S
rDNA, rbcL, tufA, and petA) DNA markers from 99
E. huxleyi and 44 G. oceanica strains, we conducted a
multigene/multistrain  survey to compare the
suitability of different markers for resolving
phylogenetic patterns within and between these two
morpho-species. The nuclear genes tested did not
provide sufficient resolution to discriminate between
the two morpho-species that diverged only 291Kya.
Typical patterns of incomplete lineage sorting were
generated in phylogenetic analyses using plastidial
genes. In contrast, full morpho-species delineation
was achieved with mitochondrial markers and
common intra-morpho-species phylogenetic patterns
were observed despite differing rates of DNA
substitution. Mitochondrial genes are thus promising
barcodes for distinguishing these coccolithophore
morpho-species, in particular in the context of
environmental monitoring.

'Received 30 January 2013. Accepted 13 October 2013.
2Author for correspondence: e-mail elmben@mba.ac.uk.
Editorial Responsibility: T. Mock (Associate Editor)

Key index words: coccolithophore; DNA barcoding;
Emiliania huxleyi; Gephyrocapsa oceanica; phylogeny;
species complex

Coccolithophores are widespread and abundant
marine microalgae characterized by their covering
of minute calcite platelets, the coccoliths. They have
played key roles in global biogeochemical cycles
(Rost and Riebesell 2004) since their origin in the
Triassic (Bown 2005), and intense research interest
has recently been focused on attempting to predict
the responses of coccolithophores to environmental
changes linked to the antropogenically induced rise
in atmospheric COy, (i.e., effects such as global
warming and ocean acidification; Riebesell et al.
2000, Iglesias-Rodriguez et al. 2008, Langer et al.
2009). The fossil remains of coccolithophores also
provide valuable proxies for paleo-environment
reconstruction, both via elemental and isotopic
analysis of coccoliths (e.g., Candelier et al. 2013)
and via measurement of the ratio of different types
of alkenone, a class of robust long-chain (Cs7-Csg)
esters of polyunsaturated n-Csg acids and Cg7-Cog
sterols produced uniquely by members of the cocco-
lithophore order Isochrysidales and widely used as a
proxy for sea surface temperature (Mduller et al.
1998).

The two numerically most important extant
coccolithophores are Emiliania huxleyi Lohmann
(Lohmann  1902) and  Gephyrocapsa  oceanica
Kamptner (Kamptner 1943). Emiliania huxleyi is cos-
mopolitan in world oceans and frequently forms
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extensive “milky water” blooms in high latitude
coastal and shelf ecosystems (Winter et al. 1994),
while G. oceanica is a warm water species that occa-
sionally blooms in transitional coastal waters in the
Pacific ocean (e.g., Blackburn and Cresswell 1993,
Kai et al. 1999). These sister species belong to the
family Noélaerhabdaceae within the prymnesiophyte
order Isochrysidales and exhibit almost identical
coccolith structure. They are distinguished by their
relative degree of calcification, with notably the ele-
vation of two of the central tube crystals forming a
disjunct bridge over the central area of coccoliths in
Gephyrocapsa (Fig. S1 in the Supporting Informa-
tion). E. huxleyi coccoliths first appeared in the fossil
record only 291,000 years ago (Raffi et al. 2006)
and fossil evidence suggests that E. huxleyi evolved
directly from G. oceanica (Samtleben 1980).

Different clonal culture strains of E. huxleyi have
been reported to respond differently in terms of cal-
cification to acidification of the growth medium
(Riebesell et al. 2000, Iglesias-Rodriguez et al. 2008,
Langer etal. 2009), raising the question as to
whether distinct genetic entities (cryptic or pseudo-
cryptic species) exist within this morphologically
defined species. Comparison of classical nuclear
ribosomal gene markers provides little or no resolu-
tion between E. huxleyi and G. oceanica (Edvardsen
et al. 2000, Fujiwara et al. 2001, Liu et al. 2010),
but there is preliminary evidence for genetic separa-
tion between the two morpho-species and/or within
E. huxleyi from genetic markers including the
nuclear-encoded calcium binding protein GPA gene
(Schroeder et al. 2005), the plastid-encoded elonga-
tion factor (ufA gene (Medlin et al. 2008, Cook
etal. 2011) and the mitochondrial cytochrome c
oxidase subunit 1 (coxI) gene (Hagino et al. 2011).
These studies were conducted with different (and
generally small) sets of culture strains, and different
markers appear to give different phylogenetic pat-
terns in relation to morphology and biogeographi-
cal origin of strains. In addition, in some cases the
two morpho-species are only partially separated by
the genetic marker (e.g., the (/A analysis of Medlin
et al. 2008).

In this context, we used a relatively large set of
culture strains to test a variety of genetic markers
from different cellular compartments for their abil-
ity to distinguish genotypes between and within
E. huxleyi and G. oceanica and for their suitability for
performing phylogenetic reconstructions. In addi-
tion to the classical (but relatively slowly evolving)
nuclear 18§ and 28S ribosomal DNA (rDNA) and
plastidial rbcL. markers, we chose to extend previous
analyses of tufA and cox! and to include a compari-
son of other markers such as the plastid-encoded
16S rDNA (widely used in prokaryote phylogenetics
and increasingly used for photosynthetic organ-
isms), the plastid-encoded petA gene (coding for a
subunit of cytochrome f), and mitochon
drion-encoded genes including two other cyto-

chrome oxidase genes (cox2, cox3), and the rpli6
(coding for a protein involved in the ribosomal
large subunit) and dam (coding for a DNA adenine
methylase) genes. Evaluation of these molecular
tools represents an essential first step toward large-
scale assessment, using next generation sequencing
amongst other methods, of the biodiversity, bioge-
ography, and eco-evolutionary dynamics of these key
phytoplankton taxa.

MATERIALS AND METHODS

Origin and morphological characterization of culture strains. Clo-
nal culture strains (Table S1 in the Supporting Information)
from the Roscoff Culture Collection, the Plymouth culture
collection, and the Provasoli-Guillard Center for Culture of
Marine Phytoplankton were maintained in K/2(-Si,-Tris,-Cu)
medium (Keller et al. 1987) at 17°C with 50 pmol pho-
tons - m 2 - s~ ! illumination provided by daylight neon tubes
with a 14:10 h L:D cycle. For analysis of coccolith morphol-
ogy by SEM, calcified cells were harvested at early exponential
growth phase and filtered onto 0.22 pm nucleopore filters
(Millipore, Molsheim, France), then dried for 2 h at 55°C.
Small pieces of filters were gold/palladium sputter coating
and observed with a FEI Quanta SEM (FEI, Hillsboro, OR,
USA).

DNA extraction, amplification, and sequencing. Genomic DNA
was extracted from cultures harvested in the exponential
phase of growth using the DNeasy Plant mini kit (Qiagen,
Hilden, Germany). Partial 18S, 28S, 16S, rbcL, tufA (two frag-
ments, one short and one long), petA, coxl (two fragments,
one short, and one long), cox2, cox3, rpll6, and dam genes
were amplified by PCR using the primer sets listed in
Table S2 in the Supporting Information (primer maps are
illustrated in Fig. S2 in the Supporting Information). PCRs
were performed in a total reaction volume of 25 pL using the
Phusion Polymerase kit (Finnzymes, Espoo, Finland). A stan-
dard PCR protocol was used for all genes with a T1 thermal
cycler (Biometra, Gottingen, Germany): 2 min initial denatur-
ation at 98°C, followed by 35 cycles of 10 s at 98°C, 30 s
annealing at 55°C, 30 s extension at 72°C. A final 10 min
extension step at 72°C was conducted to complete the ampli-
fication. Amplification products were controlled by electro-
phoresis on a 1% agarose gel. The PCR products were
sequenced directly on an ABI PRISM 3100 xI DNA auto
sequencer (Perkin-Elmer, Foster City, CA, USA) using the
ABI PRISM BigDye Terminator Cycle Sequencing Kit
(Perkin-Elmer). The sequences determined in this study were
deposited in GenBank (Table S3 in the Supporting Information).

Sequence comparison and phylogenetic analyses. The nucleo-
tide sequence data sets of each gene were aligned using the
online version of the multiple alignment program MAFFT
(Katoh et al. 2007). Alignments were double-checked de visu
in the sequence editor BIOEDIT (Hall 1999) and coding
regions were determined for plastidial (Sanchez-Puerta et al.
2005) and mitochondrial (Sanchez Puerta et al. 2004) mark-
ers. Sequences were compared using the Kimura 2-parameter
distance with the MEGA b software (Tamura et al. 2011). To
visualize genetic variability within and between morpho-spe-
cies, analyses were performed with DnaSP v5.10 (Librado and
Rozas 2009) estimated by pi (Nei 1987). Maximum likelihood
and neigbor joining phylogenetic trees were inferred for each
gene and for the concatenation of 28S rDNA, cox3, and tufA
sequences using the MEGA 5 software. Appropriate models
of DNA substitution were detected with MEGA 5, using the
three proposed statistics (AIC, AICc, and BIC). For most
markers, the best-fit substitution model was the HKY model
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FiG. 1. Unrooted schematic phylogenetic trees inferred from genetic markers used in this study. The pattern of morpho-species delin-
eation, indicated by Emiliania huxleyi and Gephyrocapsa oceanica drawings, summarizes SEM observations of all sequenced strains. For plastid-
ial markers, clades were defined independently for each gene; for mitochondrial markers, clades o and B correspond to clades defined by

“

Hagino et al. (2011). Number of sequences per tree and per branch is, respectively, given by the “n” at the bottom of each tree and the
encircled number at each branch. Detailed phylogenetic position of each strain is given in Figures S3-S6 and Table S1. (*) denotes nodes

with bootstrap values higher than 70%.

cific polymorphism within E. huxley: (pi = 10.51
x 1077, Table 1). CoxI (short and long) exhibited
the highest intraspecific polymorphism within G. oce-
anica (pi =10.33 x 10~ and 8.77 x 10~?, respec-
tively; Table 1) with a lower level of polymorphism
in E. huxleyi (pi=5.15 x 107 and 4.90 x 1077,
respectively; Table 1). Cox3, rpl16 and dam all exhib-
ited 0.8%—0.9% intraspecific variability ~within
E. huxleyi, but the largest intraspecific divergences
for this morpho-species were exhibited by the plas-

tidial (ufA (long) and petA markers (1.2% and 1.1%
respectively; Table 1).

Phylogenetic patterns. With their lack or relatively
low rate of nucleotide substitution, the 18§, 28S
(nuclear), and 16§ (plastidial) rDNA and the
rbcL genes were not suitable for constructing phylog-
enies. Other markers exhibited a phylogenetic sig-
nal, in some cases by exclusively selecting
parsimonious informative sites. Overall, plastidial
and mitochondrial markers generated partially con-
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gruent phylogenetic scenarios, with full monophy-
letic delineation of morpho-species only achieved
with the mitochondrial markers (Fig. 1 and
Figs. S3-S6 in the Supporting Information). For the
plastidial markers, four statistically supported clades
were defined the (ufA topology, similar to the clades
inferred in Cook et al. (2011), while three clades
were formed in the petA topology, but in both cases
with a clear paraphyletic pattern, with G. oceanica
strains partly distributed within E. Auxley-dominated
clusters (Fig. S3). In detail, the tufA GO clade
(Fig. 1) is composed exclusively of G. oceanica
strains, fufA I contains strains of E. huxleyi and
G. oceanica corresponding to groups 3 and 5 defined
by Cook et al. (2011), while tufA II and tufA III con-
tain exclusively E. huxleyi and correspond, respec-
tively, to group 1 and groups 2 and 4 of Cook et al.
(2011). For both petA and tufA, the phylogenies did
not correspond to geographical origin of strains or
morpho-species delineation. By contrast, the five
mitochondrial markers tested herein displayed
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RCC1288 [Mediterranean Sea]

RCC1305

I 0.001I

RCC1281 [Indian Ocean]

[North Atlantic]  $yRCC1316 [North Atlantic]

s RCC 1303 [North Atlantic]
RCC1839 [Mediterranean Sea]

RCC1562 [North Pacific]

consistent phylogenetic patterns with three statisti-
cally supported clades and clear morpho-species
delineation. Clade 7y (Fig. 1) exclusively contains
G. oceanica strains and is highly diverse in coxI.
Clades o and B contain the 84 E. huxleyi strains analy-
sed, and correspond to the clades described previ-
ously and displaying different temperature
preferences (o being a warm-water group occurring
in the subtropical Atlantic and Pacific and in the
Mediterranean Sea and B being a cool-water group
occurring in subarctic North Atlantic and North Paci-
fic and in the South Pacific (Beaufort et al. 2011;
respectively, clades I and II in Hagino et al. 2011).
The diversity within each of these clades differed
according to the marker: for example clade B was
not well-defined in the rpll6 phylogeny, while cox3
showed the highest inter- and intra-clade diversity.

G. oceanica and E. huxleyi strains were separated
and mitochondrial clades o and P retrieved in the
26 strain tree (Fig. 2) inferred from concatenated
sequences of three genes representative of each
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Fic. 2. Unrooted phylogenetic trees inferred from the concatenation of 28S rDNA, coxI and {ufA gene sequences. The pattern of mor-
pho-species delineation is given for the tree according to our SEM observations. (*) denotes nodes with bootstrap values higher than

70%.
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genomic compartment (285 rDNA, tufA and coxI).
Despite the fact that the two morpho-species were
genetically delineated in this analysis, no relation-
ship was found between the genetic grouping and
morphotypes within E. huxleyi.

DISCUSSION

Gene marker diversity. The comparison of multiple
genes in the search for genetic barcodes for accu-
rate species delineation is relatively common for
multicellular eukaryotes (plants, animals, and
fungi), but has rarely been undertaken for the older
and highly diverse protistan lineages (Pawlowski
et al. 1997), where nuclear ribosomal DNA markers
are still by far the most commonly used barcodes.
However, ribosomal genes, occurring in numerous
copies in the nuclear genome and interacting with
numerous partners during protein synthesis, are
under strong purifying selection pressure and are
best suited to resolve high-rank relationships due to
their slow evolutionary rate and very high level of
conservation (Sogin et al. 1986). For marine pro-
tists, a particularly high level of conservation of
rDNA genes is theoretically expected due to their
potentially very high effective population size
(Piganeau et al. 2011). Our multigene analysis con-
firms that rDNAs evolve too slowly to discriminate
morpho-species within the Emiliania/Gephyrocapsa
species complex, which diversified relatively recently
during the Quaternary. Likewise, the 16S rDNA
from the plastid genome, also involved in protein
synthesis, is highly conserved, as is the rbcL gene
that codes for the large subunit of RuBisCO and
thus plays a central role in carbon fixation by photo-
synthesis. Neither of these conserved plastid mark-
ers are suited for either identification or
evolutionary studies of E. huxleyi/ G. oceanica. How-
ever, all other gene markers tested in this study
exhibited higher nucleotide substitution rates, with
the partial sequences of plastidial {ufA (long) and
mitochondrial dam displaying the highest degrees of
variability for the relatively large set of strains analy-
sed, with mean overall substitution rates of, respec-
tively, 6.4% and 6.0% (Table 1).

The general pattern that emerges from our data
set is that the plastidial markers do not produce
consistent groupings both between and within
morpho-species, while the mitochondrial markers
delineate a coherent set of genetic clades at both
inter- and intra-morpho-species levels. Why such a
difference between organelles? Given the fact that
the split between G. oceanica and E. huxley: occurred
only ~291 Kya, the lack of morpho-species segrega-
tion by a genetic marker may result from incom-
plete and differential lineage sorting (i.e., the
coalescence point of the given gene predates the
speciation event; Maddison and Knowles 2006).
However, substitution rates were broadly equivalent
between plastidial and mitochondrial gene markers

in our data set (Table 1), and thus lineage sorting
cannot by itself explain why different organelles
present different patterns. Introgression of plastid-
ial genes may be a better explanation. Coccolitho-
phores have a haplo-diplontic sexual life cycle
(Billard and Inouye 2004) and the pattern
recorded for plastidial markers could reflect past,
or even potentially ongoing, hybridization of closely
related sublineages of these morpho-species. Intro-
gression of plastid genes is well-documented in
plants (e.g. Tsitrone et al. 2003). In many unicellu-
lar algae, the plastids from both gametes are pres-
ent in the newly formed zygote, but the plastid
from one mating type typically quickly degenerates
(Miyamura 2010). Even in the chlorophyte Chla-
mydomonas, where the plastids from the two
gametes fuse, an unknown mechanism leads to uni-
parental inheritance of plastid DNA (Birky 2008).
Although the mode of plastid transmission in the
sexual cycle of haptophytes is not known, introgres-
sion of plastid genes between recently diverged spe-
cies remains a possibility.

On the other hand, the reciprocal monophyly
between G. oceanica and E. huxleyi lineages observed
in all mitochondrial gene-based phylogenies sug-
gests 2 mono-parental and uni-directional transmis-
sion of this organelle in haptophytes. Transmission
of mitochondria in multicellular eukaryotes is typi-
cally mono-parental implying that the genealogical
history of mitochondrial DNA can be appropriately
represented by a unique tree (Avise 2000). Mono-
parental mitochondrial transmission has been dem-
onstrated in the green microalga Chlamydomonas
(Aoyama et al. 2006) and in the brown macroalgal
stramenopile  Scylosiphon lomentaria (Kato et al.
2006), but no experimental data exists for cocco-
lithophores or other haptophytes.

Taxonomic considerations. Overall, the exploration
of nuclear, chloroplastic, and mitochondrial mark-
ers presented here highlights the extreme related-
ness between G. oceanica and E. huxleyi, that can
only be clearly separated using mitochondrial bar-
codes. This confirms the paleontological data that
indicate a relatively recent divergence between these
taxa. In addition, Gephyrocapsa and Emiliania have a
strikingly similar life cycle, consisting of a nonmotile
placolith-bearing phase (“C-cells”), a motile phase
that bears nonmineralized organic scales (“S-cells”),
and noncalcified coccoid or amoeboid cells
(“N-cells”). The only morphological character that
reliably separates the two genera is the loss of cal-
careous bridge formation in Emiliania coccoliths.
Note that even if the palaeontological evidence sug-
gests that the Gephyrocapsa bridge structure evolved
only once, multiple events of bridge gain in pre-
Gephyrocapsa lineages or of bridge loss in distinct Ge-
phyrocapsa lineages cannot be excluded, meaning
that reliance on this character for taxonomy at the
generic level may well lead to polyphyly. Clearly,
these multiple lines of evidence call into question
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the validity of the generic level taxonomic differenti-
ation of these taxa.

First described by Lohmann (1902) as Pontosphae-
ra  huxleyi, E. huxleyi has undergone several
taxonomic changes through the 20th century
(Table S4 in the Supporting Information). The two
most recent changes (Coccolithus to Emiliania, Emilia-
nia to Gephyrocapsa) represent the crux of the taxo-
nomic question highlighted by the comparative data
presented here. Hay and Mohler (Hay et al. 1967)
integrated Coccolithus huxleyi into a newly erected
genus Emiliania, even though Kamptner (1956) had
noted the high degree of homology of the structure
of coccolith elements between E. huxleyi and G. ocea-
nica. The similarity in coccolith structure of the two
species led Reinhardt (1972) to formally propose
the transfer of E. huxleyi into the genus Gephyrocapsa.
This proposition has not been widely followed,
mainly because, in practice, discrimination of
bridge-forming Noélaerhabdaceae as Gephyrocapsa
has proven useful, notably for palaeontologists. It
can be argued that taxonomic choices should not
be dictated by considerations of practical conve-
nience, and the majority of genetic and cytological
data supports the transfer of Emiliania into the taxo-
nomically older genus Gephyrocapsa. Since the com-
binations E. huxleyi and Gephyrocapsa huxley: have
both been validly proposed, we conclude that the
choice of which name to use is subject to the opin-
ion of individual scientists on this matter, hopefully
informed by the data presented here.

Concluding remarks. Our comparative screening of
13 genes from different genomic compartments in
143 coccolithophore strains demonstrated differ-
ences in evolutionary modes and rates between the
three organellar genomes. Mitochondrial genes
combined the best amplification success, sequence
quality, and discriminatory power to work within the
Gephyrocapsa/Emiliania species complex. All mito-
chondrial markers tested in this study fully distin-
guished the two morpho-species and provided
resolution of microdiversity within the morpho-
species. In terms of sequence diversity and phyloge-
netic signal, Cox3 appears to be the most promising
of these mitochondrial markers for environmental
monitoring of these taxa, as already shown in a pre-
vious study (Beaufort et al. 2011). The coxI gene, by
far the most widely used barcode in Metazoa, has
slightly lower resolution than cox3 and has the disad-
vantage of being separated into two fragments in
the mitochondrial genome of Emiliania and Gephyro-
capsa with an intron sometimes present in the larger
fragment. Nevertheless, the high level of polymor-
phism detected in coxI sequences of G. oceanica
could be useful for further studies on the microdi-
versity within this species.

Our data confirm previous analyses showing that
mitochondrial genomes evolve faster than chloro-
plast genomes in red algal lineages (Smith et al.
2012) and photosynthetic protists with chloroplasts

of secondary endosymbiotic origin (Smith and
Keeling 2012), in contrast with terrestrial plants and
Chlorophyta that exhibit lower substitution rates in
mitochondrial compared to chloroplastic DNA. If
this holds true for the whole haptophyte lineage
and across the SAR super-group (Burki et al. 2007),
the conceptual and methodological framework
based on mitochondrial markers developed for phy-
logeographic and barcoding analyses in Metazoa
could be applied to assess species diversity and ecol-
ogy in the largest fraction of protistan biodiversity.
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