RCC references

Export 140 results:
Author [ Title(Desc)] Year
Filters: First Letter Of Last Name is A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Fuller NJ, Campbell C, Allen DJ, Pitt FD, Le Gall F, Vaulot D, Scanlan DJ.  2006.  Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquatic Microbial Ecology. 43:79–93.PDF icon Fuller et al_2006_Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the.pdf (427.42 KB)
Meng A, Corre E, Probert I, Gutierrez-Rodriguez A, Siano R, Annamale A, Alberti A, Da Silva C, Wincker P, Le Crom S et al..  2018.  Analysis of the genomic basis of functional diversity in dinoflagellates using a transcriptome-based sequence similarity network. Molecular Ecology. :0–2.PDF icon Meng et al_2018_Analysis of the genomic basis of functional diversity in dinoflagellates using.pdf (1.42 MB)
Meng A, Corre E, Probert I, Gutierrez-Rodriguez A, Siano R, Annamale A, Alberti A, Da Silva C, Wincker P, Le Crom S et al..  2018.  Analysis of the genomic basis of functional diversity in dinoflagellates using a transcriptome-based sequence similarity network. Molecular Ecology. :0–2.PDF icon Meng et al_2018_Analysis of the genomic basis of functional diversity in dinoflagellates using.pdf (1.42 MB)
Ni G, Zimbalatti G, Murphy CD, Barnett AB, Arsenault CM, Li G, Cockshutt AM, Campbell DA.  2017.  Arctic Micromonas uses protein pools and non-photochemical quenching to cope with temperature restrictions on Photosystem II protein turnover. Photosynthesis Research. 131:203–220.PDF icon Ni et al_2017_Arctic Micromonas uses protein pools and non-photochemical quenching to cope.pdf (1.52 MB)
Bouquet A, Felix C, Masseret E, Reymond C, Abadie E, Laabir M, Rolland JLuc.  2023.  Artificial Substrates Coupled with qPCR (AS-qPCR) Assay for the Detection of the Toxic Benthopelagic Dinoflagellate Vulcanodinium rugosum. Toxins. 15:217.PDF icon Bouquet et al_2023_Artificial Substrates Coupled with qPCR (AS-qPCR) Assay for the Detection of.pdf (1.57 MB)
B
Abby SS, Touchon M, De Jode A, Grimsley N, Piganeau G.  2014.  Bacteria in Ostreococcus tauri cultures - friends, foes or hitchhikers? Frontiers in microbiology. 5:505.PDF icon Abby et al_2014_Bacteria in Ostreococcus tauri cultures - friends, foes or hitchhikers.pdf (1.03 MB)
Androuin T, Six C, Bordeyne F, de Bettignies F, Noisette F, Davoult D.  2020.  Better off alone? New insights in the symbiotic relationship between the flatworm Symsagittifera roscoffensis and the microalgae Tetraselmis convolutae Symbiosis. PDF icon Androuin et al_2020_Better off alone.pdf (782.21 KB)
Annunziata R, Ritter A, Fortunato AEmidio, Cheminant-Navarro S, Agier N, Huysman MJJ, Winge P, Bones A, Bouget F-Y, Lagomarsino MCosentino et al..  2018.  A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine diatom Phaeodactylum tricornutum. bioRxiv. :271445.PDF icon Annunziata et al_2018_A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine.pdf (2.83 MB)
Annunziata R, Ritter A, Fortunato AEmidio, Cheminant-Navarro S, Agier N, Huysman MJJ, Winge P, Bones A, Bouget F-Y, Lagomarsino MCosentino et al..  2018.  A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine diatom Phaeodactylum tricornutum. bioRxiv. :271445.PDF icon Annunziata et al_2018_A bHLH-PAS protein regulates light-dependent rhythmic processes in the marine.pdf (2.83 MB)
Churakova Y, Aguilera A, Charalampous E, Conley DJ, Lundin D, Pinhassi J, Farnelid H.  2023.  Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle. Environmental Microbiology Reports. n/aPDF icon Churakova et al_2023_Biogenic silica accumulation in picoeukaryotes.pdf (454.16 KB)
Cruz JDiogo, Delattre C, Felpeto ABarreiro, Pereira H, Pierre G, Morais J, Petit E, Silva J, Azevedo J, Elboutachfaiti R et al..  2023.  Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Scientific Reports. 13:13561.PDF icon Cruz et al_2023_Bioprospecting for industrially relevant exopolysaccharide-producing.pdf (2.12 MB)
Abida H, Ruchaud S, Rios L, Humeau A, Probert I, de Vargas C, Bach S, Bowler C.  2013.  Bioprospecting marine plankton. Marine Drugs. 11:4594–4611.PDF icon Abida et al_2013_Bioprospecting marine plankton.pdf (892.28 KB)
C
Liao S, Yao Y, Wang L, Wang KJ, Amaral-Zettler L, Longo WM, Huang Y.  2020.  C41 methyl and C42 ethyl alkenones are biomarkers for Group II Isochrysidales. Organic Geochemistry. 147:104081.
McQuaid JB, Kustka AB, Obornik M, Horak A, McCrow JP, Karas BJ, Zheng H, Kindeberg T, Andersson AJ, Barbeau KA et al..  2018.  Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature. 555:534–537.PDF icon McQuaid et al_2018_Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in.pdf (2.97 MB)
McQuaid JB, Kustka AB, Obornik M, Horak A, McCrow JP, Karas BJ, Zheng H, Kindeberg T, Andersson AJ, Barbeau KA et al..  2018.  Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature. 555:534–537.PDF icon McQuaid et al_2018_Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in.pdf (2.97 MB)
Alacid E, Richards TA.  2021.  A cell–cell atlas approach for understanding symbiotic interactions between microbes. Current Opinion in Microbiology. 64:47–59.
Palacio AS, Cabello AMaría, García FC, Labban A, Morán XAnxelu G, Garczarek L, Alonso-Sáez L, López-Urrutia Á.  2020.  Changes in population age-structure obscure the temperature-size rule in marine cyanobacteria. Frontiers in Microbiology. 11:2059.PDF icon Palacio et al_2020_Changes in population age-structure obscure the temperature-size rule in marine.pdf (1.72 MB)
Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C.  2008.  The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proceedings of the National Academy of Sciences of the United States of America. 105:15944–15949.PDF icon Frada et al_2008_The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in.pdf (886.03 KB)
West NJ, Schonhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, Scanlan DJ.  2001.  Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology - UK. 147:1731–1744.PDF icon West et al_2001_Closely related Prochlorococcus genotypes show remarkably different depth.pdf (1.97 MB)
Reid EL, Worthy CA, Probert I, Ali ST, Love J, Napier J, Littlechild JA, Somerfield PJ, Allen MJ.  2011.  Coccolithophores: Functional biodiversity, enzymes and bioprospecting. Marine Drugs. 9:586–602.PDF icon Reid et al_2011_Coccolithophores.pdf (369.69 KB)
Reid EL, Worthy CA, Probert I, Ali ST, Love J, Napier J, Littlechild JA, Somerfield PJ, Allen MJ.  2011.  Coccolithophores: Functional biodiversity, enzymes and bioprospecting. Marine Drugs. 9:586–602.PDF icon Reid et al_2011_Coccolithophores.pdf (369.69 KB)
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S.  2021.  Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. PDF icon Thomy et al. - 2021 - Combining Nanopore and Illumina Sequencing Permits.pdf (1.99 MB)
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S.  2021.  Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells. 10:664.PDF icon Thomy et al. - 2021 - Combining Nanopore and Illumina Sequencing Permits.pdf (1.99 MB)

Pages