RCC references

Export 568 results:
Author [ Title(Desc)] Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Blot N, Mella-Flores D, Six C, Lecorguille G, Boutte C, Peyrat A, Monnier A, Ratin M, Gourvil P, Campbell DA et al..  2011.  Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. Plant Physiology. 156:1934–1954.PDF icon Blot et al_2011_Light history influences the response of the marine cyanobacterium.pdf (1.37 MB)
Richier S, Kerros ME, de Vargas C, Haramaty L, Falkowski PG, Gattuso JP.  2009.  Light-dependent transcriptional regulation of genes of biogeochemical interest in the diploid and haploid life cycle stages of Emiliania huxleyi. Applied and Environmental Microbiology. 75:3366–3369.PDF icon Richier et al_2009_Light-dependent transcriptional regulation of genes of biogeochemical interest.pdf (272.41 KB)
Falciatore A, Bailleul B, Boulouis A, Bouly J-P, Bujaldon S, Cheminant-Navarro S, Choquet Y, de Vitry C, Eberhard S, Jaubert M et al..  2022.  Light-driven processes: key players of the functional biodiversity in microalgae. Comptes Rendus. Biologies. 345:1–24.PDF icon Falciatore et al_2022_Light-driven processes.pdf (2.62 MB)
Castejón D, Nogueira N, Andrade CAP.  2022.  Limpet larvae (Patella aspera Röding, 1798), obtained by gonad dissection and fecundation in vitro, settled and metamorphosed on crustose coralline algae. Journal of the Marine Biological Association of the United Kingdom. :1–12.PDF icon Castejon et al_2022_Limpet larvae (Patella aspera Roding, 1798), obtained by gonad dissection and.pdf (901.99 KB)
Delmont TO, A. Eren M.  2018.  Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ. 6:e4320.PDF icon Delmont_Eren_2018_Linking pangenomes and metagenomes.pdf (10.22 MB)
Ota S, Vaulot D.  2012.  Lotharella reticulosa sp. nov.: A highly reticulated network forming chlorarachniophyte from the mediterranean sea. Protist. 163:91–104.PDF icon Ota_Vaulot_2012_Lotharella reticulosa sp.pdf (2.15 MB)
M
Zhu F, Massana R, Not F, Marie D, Vaulot D.  2005.  Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiology Ecology. 52:79–92.PDF icon Zhu et al_2005_Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S.pdf (220.7 KB)
Groussman R.D, Blaskowski S., Coesel S.N, Armbrust E.V.  2023.  MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Scientific Data. 10:926.PDF icon Groussman et al_2023_MarFERReT, an open-source, version-controlled reference library of marine.pdf (2.17 MB)
Duanmu D, Bachy C, Sudek S, Wong C-H, Jimenez V, Rockwell NC, Martin SS, Ngan CYee, Reistetter EN, van Baren MJ et al..  2014.  Marine algae and land plants share conserved phytochrome signaling systems. Proceedings of the National Academy of Sciences of the United States of America. 111:15827–15832.
Reddy MM, Jennings L, Thomas OP.  2021.  Marine Biodiscovery in a Changing World. Progress in the Chemistry of Organic Natural Products 116. :1–36.PDF icon Reddy et al_2021_Marine Biodiscovery in a Changing World.pdf (685.24 KB)
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, E Armbrust V, Archibald JM, Bharti AK, Bell CJ et al..  2014.  The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS biology. 12:e1001889.PDF icon Keeling et al_2014_The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP).pdf (353.97 KB)
Moreau H, Piganeau G, Desdevises Y, Cooke R, Derelle E, Grimsley N.  2010.  Marine Prasinovirus genomes show low evolutionary divergence and acquisition of protein metabolism genes by horizontal gene transfer. Journal of Virology. 84:12555–12563.PDF icon Moreau et al_2010_Marine Prasinovirus genomes show low evolutionary divergence and acquisition of.pdf (2.2 MB)
Weynberg KD, Allen MJ, Wilson WH.  2017.  Marine prasinoviruses and their tiny plankton hosts : A review. Viruses. :1–20.PDF icon Weynberg et al_2017_Marine prasinoviruses and their tiny plankton hosts.pdf (4.59 MB)
Six C, Ratin M, Marie D, Corre E.  2021.  Marine Synechococcus picocyanobacteria: Light utilization across latitudes. Proceedings of the National Academy of Sciences. 118PDF icon Six et al_2021_Marine Synechococcus picocyanobacteria.pdf (1.31 MB)PDF icon Six et al. - 2021 - Marine Synechococcus picocyanobacteria Li.pdf (1.15 MB)
Domínguez-Martín MAgustina, López-Lozano A, Melero-Rubio Y, Gómez-Baena G, Jiménez-Estrada JAndrés, Kukil K, Díez J, García-Fernández JManuel.  2022.  Marine \textit{Synechococcus sp. Strain WH7803 Shows Specific Adaptative Responses to Assimilate Nanomolar Concentrations of Nitrate. Microbiology Spectrum. 10:e00187–22.PDF icon Domínguez-Martín et al. - 2022 - Marine Synechococcus sp. Strain WH7803 Show.pdf (2.07 MB)
Zeng Q, Chisholm SW.  2012.  Marine viruses exploit their host's two-component regulatory system in response to resource limitation. Current Biology. PDF icon Zeng_Chisholm_2012_Marine viruses exploit their host's two-component regulatory system in response.pdf (317.21 KB)
Wang J, Zeng C, Feng Y.  2024.  Meta-analysis reveals responses of coccolithophores and diatoms to warming. Marine Environmental Research. 193:106275.PDF icon Wang et al. - 2024 - Meta-analysis reveals responses of coccolithophore.pdf (6.51 MB)
Nikitashina V, Stettin D, Pohnert G.  2022.  Metabolic adaptation of diatoms to hypersalinity. Phytochemistry. :113267.PDF icon Nikitashina et al. - 2022 - Metabolic adaptation of diatoms to hypersalinity.pdf (1.63 MB)
Stettin D, Poulin RX, Pohnert G.  2020.  Metabolomics benefits from orbitrap GC–MS—Comparison of low- and high-resolution GC–MS. Metabolites. 10:143.PDF icon Stettin et al_2020_Metabolomics benefits from orbitrap GC–MS—Comparison of low- and.pdf (1.6 MB)
Karin ELevy, Mirdita M, Soeding J.  2019.  MetaEuk – sensitive, high-throughput gene discovery and annotation for large-scale eukaryotic metagenomics. bioRxiv. :851964.
Klintzsch T, Langer G, Nehrke G, Wieland A, Lenhart K, Keppler F.  2019.  Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. Biogeosciences. 16:4129–4144.PDF icon Klintzsch et al_2019_Methane production by three widespread marine phytoplankton species.pdf (1.79 MB)
Mincer TJ, Aicher AC.  2016.  Methanol production by a broad phylogenetic array of marine phytoplankton.. PloS one. 11:e0150820.PDF icon Mincer_Aicher_2016_Methanol production by a broad phylogenetic array of marine phytoplankton.pdf (1.76 MB)
Barbosa M, Inácio LGarcia, Afonso C, Maranhão P.  2023.  The microalga \textit{Dunaliella and its applications: a review. Applied Phycology. 4:99–120.PDF icon Barbosa et al_2023_The microalga iDunaliella-i and its applications.pdf (1.43 MB)
Hird C, Jekely G, Williams EA.  2024.  Microalgal biofilm induces larval settlement in the model marine worm \textit{Platynereis dumerilii. PDF icon Hird et al. - 2024 - Microalgal biofilm induces larval settlement in th.pdf (3.08 MB)
Dayras P, Bialais C, Sadovskaya I, Lee M-C, Lee J-S, Souissi S.  2021.  Microalgal Diet Influences the Nutritive Quality and Reproductive Investment of the Cyclopoid Copepod Paracyclopina nana. Frontiers in Marine Science. 8:1147.PDF icon Dayras et al. - 2021 - Microalgal Diet Influences the Nutritive Quality a.pdf (1.99 MB)

Pages