%0 Journal Article %J Microorganisms %D 2022 %T Temperature Affects the Biological Control of Dinoflagellates by the Generalist Parasitoid Parvilucifera rostrata %A Schmitt, Matthew %A Telusma, Aaron %A Bigeard, Estelle %A Guillou, Laure %A Alves-de-Souza, Catharina %K dinoflagellate blooms %K functional response %K parasitic control %K RCC2800 %K RCC2823 %K RCC2982 %K RCC3018 %K RCC4398 %K temperature effect %X The increase in emerging harmful algal blooms in the last decades has led to an extensive concern in understanding the mechanisms behind these events. In this paper, we assessed the growth of two blooming dinoflagellates (Alexandrium minutum and Heterocapsa triquetra) and their susceptibility to infection by the generalist parasitoid Parvilucifera rostrata under a temperature gradient. The growth of the two dinoflagellates differed across a range of temperatures representative of the Penzé Estuary (13 to 22 °C) in early summer. A. minutum growth increased across this range and was the highest at 19 and 22 °C, whereas H. triquetra growth was maximal at intermediate temperatures (15–18 °C). Interestingly, the effect of temperature on the parasitoid infectivity changed depending on which host dinoflagellate was infected with the dinoflagellate responses to temperature following a positive trend in A. minutum (higher infections at 20–22 °C) and a unimodal trend in H. triquetra (higher infections at 18 °C). Low temperatures negatively affected parasitoid infections in both hosts (i.e., “thermal refuge”). These results demonstrate how temperature shifts may not only affect bloom development in microalgal species but also their control by parasitoids. %B Microorganisms %V 10 %P 385 %G eng %U https://www.mdpi.com/2076-2607/10/2/385 %R 10.3390/microorganisms10020385 %0 Journal Article %J BMC Biology %D 2021 %T Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. %A Farhat, Sarah %A Le, Phuong %A Kayal, Ehsan %A Noel, Benjamin %A Bigeard, Estelle %A Corre, Erwan %A Maumus, Florian %A Florent, Isabelle %A Alberti, Adriana %A Aury, Jean-Marc %A Barbeyron, Tristan %A Cai, Ruibo %A Silva, Corinne Da %A Istace, Benjamin %A Labadie, Karine %A Marie, Dominique %A Mercier, Jonathan %A Rukwavu, Tsinda %A Szymczak, Jeremy %A Tonon, Thierry %A Alves-de-Souza, Catharina %A Rouze, Pierre %A de Peer, Yves Van %A Wincker, Patrick %A Rombauts, Stephane %A Porcel, Betina M %A Guillou, Laure %K Dinoflagellate %K genome %K Introner elements %K Non-canonical introns %K parasite %K RCC4383 %K RCC4398 %B BMC Biology %P 1–21 %G eng %R 10.1186/s12915-020-00927-9 %0 Journal Article %J Scientific Reports %D 2020 %T Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach %A Cai, Ruibo %A Kayal, Ehsan %A Alves-de-Souza, Catharina %A Bigeard, Estelle %A Corre, Erwan %A Jeanthon, Christian %A Marie, Dominique %A Porcel, Betina M %A Siano, Raffaele %A Szymczak, Jeremy %A Wolf, Matthias %A Guillou, Laure %K RCC1627 %K RCC1720 %K RCC3018 %K RCC3043 %K RCC3044 %K RCC3047 %K RCC3048 %K RCC3049 %K RCC3145 %K RCC3278 %K RCC3596 %K RCC4381 %K RCC4382 %K RCC4383 %K RCC4384 %K RCC4385 %K RCC4386 %K RCC4387 %K RCC4388 %K RCC4389 %K RCC4390 %K RCC4391 %K RCC4392 %K RCC4393 %K RCC4394 %K RCC4395 %K RCC4396 %K RCC4397 %K RCC4398 %K RCC4399 %K RCC4400 %K RCC4401 %K RCC4402 %K RCC4403 %K RCC4404 %K RCC4405 %K RCC4406 %K RCC4407 %K RCC4408 %K RCC4409 %K RCC4410 %K RCC4411 %K RCC4412 %K RCC4413 %K RCC4414 %K RCC4415 %K RCC4416 %K RCC4711 %K RCC4712 %K RCC4713 %K RCC4715 %K RCC4716 %K RCC4722 %K RCC4723 %K RCC4726 %K RCC4728 %K RCC4729 %K RCC4732 %K RCC4733 %K RCC4734 %K RCC5984 %K RCC5985 %K RCC5986 %K RCC5987 %K RCC5988 %K RCC5989 %K RCC5990 %K RCC5991 %K RCC5992 %K RCC5993 %K RCC5994 %K RCC5995 %K RCC5997 %K RCC5998 %K RCC5999 %K RCC6000 %K RCC6001 %K RCC6002 %K RCC6003 %K RCC6004 %K RCC6005 %K RCC6006 %K RCC6007 %K RCC6008 %K RCC6009 %K RCC6010 %K RCC6079 %K RCC6080 %K RCC6081 %K RCC6082 %K RCC6083 %K RCC6084 %K RCC6085 %K RCC6087 %K RCC6088 %K RCC6094 %K RCC6096 %K RCC6100 %K RCC6101 %K RCC6102 %K RCC6103 %K RCC6104 %K RCC6105 %K RCC6106 %K RCC6107 %K RCC6108 %K RCC6109 %K RCC6110 %K RCC6111 %K RCC6112 %K RCC6113 %K RCC6115 %K RCC6116 %K RCC6117 %K RCC6118 %K RCC6119 %K RCC6120 %K RCC6121 %B Scientific Reports %V 10 %P 2531 %8 dec %G eng %U http://dx.doi.org/10.1038/s41598-020-59524-z http://www.nature.com/articles/s41598-020-59524-z %R 10.1038/s41598-020-59524-z %0 Journal Article %J Frontiers in Microbiology %D 2020 %T Dinoflagellate host chloroplasts and mitochondria remain functional during amoebophrya infection %A Kayal, Ehsan %A Alves-de-Souza, Catharina %A Farhat, Sarah %A Velo-Suarez, Lourdes %A Monjol, Joanne %A Szymczak, Jeremy %A Bigeard, Estelle %A Marie, Dominique %A Noel, Benjamin %A Porcel, Betina M %A Corre, Erwan %A Six, Christophe %A Guillou, Laure %K amoebophrya %K chloroplast %K Dinoflagellate %K frontiers in microbiology %K frontiersin %K kleptoplast %K marine plankton %K org %K organelles %K parasitism %K RCC1627 %K RCC4398 %K www %X Dinoflagellates are major components of phytoplankton that play critical roles in many microbial food webs, many of them being hosts of countless intracellular parasites. The phototrophic dinoflagellate Scrippsiella acuminata (Dinophyceae) can be infected by the microeukaryotic parasitoids Amoebophrya spp. (Syndiniales), some of which primarily target and digest the host nucleus. Early digestion of the nucleus at the beginning of the infection is expected to greatly impact the host metabolism, inducing the knockout of the organellar machineries that highly depend upon nuclear gene expression, such as the mitochondrial OXPHOS pathway and the plastid photosynthetic carbon fixation. However, previous studies have reported that chloroplasts remain functional in swimming host cells infected by Amoebophrya . We report here a multi-approach monitoring study of S. acuminata organelles over a complete infection cycle by nucleus-targeting Amoebophrya sp. strain A120. Our results show sustained and efficient photosystem II activity as a hallmark of functional chloroplast throughout the infection period despite the complete digestion of the host nucleus. We also report the importance played by light on parasite production, i.e., the amount of host biomass converted to parasite infective propagules. Using a differential gene expression analysis, we observed an apparent increase of all 3 mitochondrial and 9 out of the 11 plastidial genes involved in the electron transport chains (ETC) of the respiration pathways during the first stages of the infection. The longer resilience of organellar genes compared to those encoded by the nucleus suggests that both mitochondria and chloroplasts remain functional throughout most of the infection. This extended organelle functionality, along with higher parasite production under light conditions, suggests that host bioenergetic organelles likely benefit the parasite Amoebophrya sp. A120 and improve its fitness during the intracellular infective stage. %B Frontiers in Microbiology %V 11 %P 1–11 %8 dec %G eng %U https://www.frontiersin.org/articles/10.3389/fmicb.2020.600823/full %R 10.3389/fmicb.2020.600823