@article {kawachi_rappemonads_2021, title = {Rappemonads are haptophyte phytoplankton}, journal = {Current Biology}, year = {2021}, month = {mar}, abstract = {Rapidly accumulating genetic data from environmental sequencing approaches have revealed an extraordinary level of unsuspected diversity within marine phytoplankton,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 which is responsible for around 50\% of global net primary production.12,13 However, the phenotypic identity of many of the organisms distinguished by environmental DNA sequences remains unclear. The rappemonads represent a plastid-bearing protistan lineage that to date has only been identified by environmental plastid 16S rRNA sequences.14, 15, 16, 17 The phenotypic identity of this group, which does not confidently cluster in any known algal clades in 16S rRNA phylogenetic reconstructions,15 has remained unknown since the first report of environmental sequences over two decades ago. We show that rappemonads are closely related to a haptophyte microalga, Pavlomulina ranunculiformis gen. nov. et sp. nov., and belong to a new haptophyte class, the Rappephyceae. Organellar phylogenomic analyses provide strong evidence for the inclusion of this lineage within the Haptophyta as a sister group to the Prymnesiophyceae. Members of this new class have a cosmopolitan distribution in coastal and oceanic regions. The relative read abundance of Rappephyceae in a large environmental barcoding dataset was comparable to, or greater than, those of major haptophyte species, such as the bloom-forming Gephyrocapsa huxleyi and Prymnesium parvum, and this result indicates that they likely have a significant impact as primary producers. Detailed characterization of Pavlomulina allowed for reconstruction of the ancient evolutionary history of the Haptophyta, a group that is one of the most important components of extant marine phytoplankton communities.}, keywords = {environmental DNA sequences, morphological evolution, organellar phylogenomics, phytoplankton diversity, RCC3430, transmission electron microscopy}, issn = {0960-9822}, doi = {10.1016/j.cub.2021.03.012}, url = {https://www.sciencedirect.com/science/article/pii/S0960982221003511}, author = {Kawachi, Masanobu and Nakayama, Takuro and Kayama, Motoki and Nomura, Mami and Miyashita, Hideaki and Bojo, Othman and Rhodes, Lesley and Sym, Stuart and Pienaar, Richard N. and Probert, Ian and Inouye, Isao and Kamikawa, Ryoma} } @article {Kashiyama2019, title = {Taming chlorophylls by early eukaryotes underpinned algal interactions and the diversification of the eukaryotes on the oxygenated Earth}, journal = {The ISME Journal}, year = {2019}, note = {Publisher: Springer US tex.mendeley-tags: RCC164,RCC22,RCC24,RCC375,RCC916}, month = {feb}, pages = {1}, abstract = {Extant eukaryote ecology is primarily sustained by oxygenic photosynthesis, in which chlorophylls play essential roles. The exceptional photosensitivity of chlorophylls allows them to harvest solar energy for photosynthesis, but on the other hand, they also generate cytotoxic reactive oxygen species. A risk of such phototoxicity of the chlorophyll must become particularly prominent upon dynamic cellular interactions that potentially disrupt the mechanisms that are designed to quench photoexcited chlorophylls in the phototrophic cells. Extensive examination of a wide variety of phagotrophic, parasitic, and phototrophic microeukaryotes demonstrates that a catabolic process that converts chlorophylls into nonphotosensitive 132,173-cyclopheophorbide enols (CPEs) is phylogenetically ubiquitous among extant eukaryotes. The accumulation of CPEs is identified in phagotrophic algivores belonging to virtually all major eukaryotic assemblages with the exception of Archaeplastida, in which no algivorous species have been reported. In addition, accumulation of CPEs is revealed to be common among phototrophic microeukaryotes (i.e., microalgae) along with dismantling of their secondary chloroplasts. Thus, we infer that CPE-accumulating chlorophyll catabolism (CACC) primarily evolved among algivorous microeukaryotes to detoxify chlorophylls in an early stage of their evolution. Subsequently, it also underpinned photosynthetic endosymbiosis by securing close interactions with photosynthetic machinery containing abundant chlorophylls, which led to the acquisition of secondary chloroplasts. Our results strongly suggest that CACC, which allowed the consumption of oxygenic primary producers, ultimately permitted the successful radiation of the eukaryotes throughout and after the late Proterozoic global oxygenation.}, keywords = {Biochemistry, Biogeochemistry, Cellular microbiology, microbial ecology, RCC164, RCC22, RCC24, RCC375, RCC916}, issn = {1751-7362}, doi = {10.1038/s41396-019-0377-0}, url = {http://www.nature.com/articles/s41396-019-0377-0}, author = {Kashiyama, Yuichiro and Yokoyama, Akiko and Shiratori, Takashi and Hess, Sebastian and Not, Fabrice and Bachy, Charles and Gutierrez-Rodriguez, Andres and Kawahara, Jun and Suzaki, Toshinobu and Nakazawa, Masami and Ishikawa, Takahiro and Maruyama, Moe and Wang, Mengyun and Chen, Man and Gong, Yingchun and Seto, Kensuke and Kagami, Maiko and Hamamoto, Yoko and Honda, Daiske and Umetani, Takahiro and Shihongi, Akira and Kayama, Motoki and Matsuda, Toshiki and Taira, Junya and Yabuki, Akinori and Tsuchiya, Masashi and Hirakawa, Yoshihisa and Kawaguchi, Akane and Nomura, Mami and Nakamura, Atsushi and Namba, Noriaki and Matsumoto, Mitsufumi and Tanaka, Tsuyoshi and Yoshino, Tomoko and Higuchi, Rina and Yamamoto, Akihiro and Maruyama, Tadanobu and Yamaguchi, Aika and Uzuka, Akihiro and Miyagishima, Shinya and Tanifuji, Goro and Kawachi, Masanobu and Kinoshita, Yusuke and Tamiaki, Hitoshi} }